Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polyisoprene isoprene rubber, natural

The use of alkaU metals for anionic polymerization of diene monomers is primarily of historical interest. A patent disclosure issued in 1911 (16) detailed the use of metallic sodium to polymerize isoprene and other dienes. Independentiy and simultaneously, the use of sodium metal to polymerize butadiene, isoprene, and 2,3-dimethyl-l,3-butadiene was described (17). Interest in alkaU metal-initiated polymerization of 1,3-dienes culminated in the discovery (18) at Firestone Tire and Rubber Co. that polymerization of neat isoprene with lithium dispersion produced high i7j -l,4-polyisoprene, similar in stmcture and properties to Hevea natural mbber (see ELASTOLffiRS,SYNTHETic-POLYisoPRENE Rubber, natural). [Pg.236]

Polymerised isoprene. Naturally-occurring polyisoprenes are natural rubber (cA-form) and gutta percha (trans- form). The use of stereo specific catalysts has made possible the manufacture of synthetic cA-polyisoprene and fraws-polyisoprene both of which are now available commercially. [Pg.49]

The search for a lightweight, nonbreakable, moldable material began with the invention of vulcanized rubber. This material is derived from natural rubber, which is a semisolid, elastic, natural polymer. The fundamental chemical unit of natural rubber is polyisoprene, which plants produce from isoprene molecules, as shown in Figure 18.5. In the 1700s, natural rubber was noted for its ability to rub off pencil marks, which is the origin of the term rubber. Natural rubber has few other uses, however, because it turns gooey at warm temperatures and brittle at cold temperatures. [Pg.612]

The usefulness of analytical pyrolysis in polymer characterization, identification, or quantitation has long been demonstrated. The first application of analytical pyrolysis can be considered the discovery in 1860 of the structure of natural rubber as being polyisoprene [10]. This was done by the identification of isoprene as the main pyrolysis product of rubber. Natural organic polymers and their composite materials such as wood, peat, soils, bacteria, animal cells, etc. are good candidates for analysis using a pyrolytic step. [Pg.5]

Natural rubber is produced from a milky-white colloidal latex found in the rubber tree. It is a polymeric terpene with isoprene being the recurring polymeric unit. Polyisoprene rubber can also be produced synthetically by the addition polymerization of isoprene by 1,4-addition. Other synthetic rubbers include SBR (styrene-butadiene rubber), polybutadiene, and neoprene. Rubber is strengthened, hardened, and made more elastic by a process called vulcanization in which sulfur bridges form links within the polymeric chains. These links become strained when the rubber is stretched and when released the rubber assumes its original conformation. [Pg.109]

Synthetic polyisoprene rubbers were found by Harries during 1910 [19], to be successfully hydrochlorinated. These synthetic polyisoprenes resemble natural rubber, which is also a polymer of isoprene which occurs naturally and therefore hydrogen chloride is rapidly added when the rubber is exposed to it thus forming a protective film of chlorinated rubber or hydrogen chloride. Polybutadiene, and butadiene acrylonitrile rubbers do not add hydrogen chloride from hydrochloric acid. [Pg.95]

Polyisoprene, The main ingredient of natmal rubber is cw-1,4-polyisoprene. The synthetic cw-l,4-polyisoprene is isoprene rubber. Natural guttapercha is tm/ty-1,4-polyisoprene. [Pg.23]

Polyisoprene n. A polymer of isoprene. The ds-1,4- type of polyisoprene occurs naturally as the major polymer in natural rubber and is also produced synthetically. The trans-1,4- type resembles Gutta-Percha and has in the past been used in golf-ball covers and shoe soles. [Pg.754]

Natural rubber or polyisoprene (NR or IR) Ethylene propylene diene rubber (EPDM) Isobutylene-isoprene (butyl) rubber (HR)... [Pg.64]

NR, IR Natural rubber, Isoprene Polyisoprene Most moderate wet or dry chemicals, organic acids, alcohols, ketones, aldehydes Ozone, strong acids, fats, oils, greases, most hydrocarbons... [Pg.43]

One other variant in double-bond polymerisations may be mentioned here. Many conjugated dienes may be polymerised in such a way as to generate long chain molecules with residual double bonds in the chain. Well-known examples of such dienes are buta-1,3-diene and isoprene, which yield 1,4-polybutadiene and 1,4-polyisoprene respectively (Figure 2.4). Natural rubber has a formula corresponding to the 1,4-polyisoprene. [Pg.20]

Isoprene (2-methyl 1,3-butadiene) is the second most important conjugated diolefin after butadiene. Most isoprene production is used for the manufacture of cis-polyisoprene, which has a similar structure to natural rubber. It is also used as a copolymer in butyl rubber formulations. [Pg.104]

Standard butyl rubber, which is a copolymer of isobutylene with about 2% of isoprene vulcanises in the same manner as natural rubber but, as it only contains a small proportion of polyisoprene, the cross-link percentage is much reduced. It is therefore not possible to make ebonite from a butyl rubber. The same vulcanisation chemistry, with some modifications, applies to ethylene-propylene terpolymers and brominated butyl rubber. [Pg.939]

Isoprene may be the naturally occurring alkene with the greatest economic impact. This compound, a major component of the sap of the rubber tree, is used to make the long-chain molecules of natural rubber (polyisoprene). As we describe in Chapter 13. the synthetic rubbers that make up most of today s tires are made from other alkenes. [Pg.686]

Other polymeric binders, natural and synthetic, may be found as paints or varnishes in modern artworks and installations. Artists very easily adopt resins developed as industrial coatings or for specialized applications, and use them according to their creative needs. Natural rubber latex is a water dispersion of 1,4-ds-polyisoprene particles where pigments can be added to give coloured paints. By means of Py-GC/MS the presence of these paints can be easily assessed. As shown in Figure 12.13, the principal marker peaks in the pyrogram are those of isoprene, limonene and other cyclic dimers. [Pg.356]

Butadiene and isoprene have two double bonds, and they polymerize to polymers with one double bond per monomeric unit. Hence, these polymers have a high degree of unsaturation. Natural rubber is a linear cis-polyisoprene from 1,4-addition. The corresponding trans structure is that of gutta-percha. Synthetic polybutadienes and polyisoprenes and their copolymers usually contain numerous short-chain side branches, resulting from 1,2-additions during the polymerization. Polymers and copolymers of butadiene and isoprene as well as copolymers of butadiene with styrene (GR-S or Buna-S) and copolymers of butadiene with acrylonitrile (GR-N, Buna-N or Perbunan) have been found to cross-link under irradiation. [Pg.346]

Diene polymers refer to polymers synthesized from monomers that contain two carbon-carbon double bonds (i.e., diene monomers). Butadiene and isoprene are typical diene monomers (see Scheme 19.1). Butadiene monomers can link to each other in three ways to produce ds-1,4-polybutadiene, trans-l,4-polybutadi-ene and 1,2-polybutadiene, while isoprene monomers can link to each other in four ways. These dienes are the fundamental monomers which are used to synthesize most synthetic rubbers. Typical diene polymers include polyisoprene, polybutadiene and polychloroprene. Diene-based polymers usually refer to diene polymers as well as to those copolymers of which at least one monomer is a diene. They include various copolymers of diene monomers with other monomers, such as poly(butadiene-styrene) and nitrile butadiene rubbers. Except for natural polyisoprene, which is derived from the sap of the rubber tree, Hevea brasiliensis, all other diene-based polymers are prepared synthetically by polymerization methods. [Pg.547]

Natural rubber may be considered as a linear polymer of isoprene (2-methyl-1, 3-butadiene) and is also called as cis -1,4-polyisoprene. [Pg.142]

Isoprene molecules react with one another to form polyisoprene, the fundamental chemical unit of natural rubber, which comes from rubber trees. [Pg.613]

Natural rubber is a polymer of isoprene- most often cis-l,4-polyiso-prene - with a molecular weight of 100,000 to 1,000,000. Typically, a few percent of other materials, such as proteins, fatty acids, resins and inorganic materials is found in natural rubber. Polyisoprene is also created synthetically, producing what is sometimes referred to as "synthetic natural rubber". Owing to the presence of a double bond in each and every repeat unit, natural rubber is sensitive to ozone cracking. Some natural rubber sources called gutta percha are composed of trans-1,4-poly isoprene, a structural isomer which has similar, but not identical properties. Natural rubber is an elastomer and a thermoplastic. However, it should be noted that as the rubber is vulcanized it will turn into a thermoset. Most rubber in everyday use is vulcanized to a point where it shares properties of both, i.e., if it is heated and cooled, it is degraded but not destroyed. [Pg.89]


See other pages where Polyisoprene isoprene rubber, natural is mentioned: [Pg.168]    [Pg.169]    [Pg.3]    [Pg.63]    [Pg.44]    [Pg.434]    [Pg.887]    [Pg.227]    [Pg.347]    [Pg.3]    [Pg.468]    [Pg.2]    [Pg.3]    [Pg.351]    [Pg.884]    [Pg.634]    [Pg.738]    [Pg.410]    [Pg.170]    [Pg.217]    [Pg.743]    [Pg.776]    [Pg.92]    [Pg.115]   


SEARCH



Isoprene polyisoprene

Isoprene rubber

Natural polyisoprenes

Polyisoprene

Polyisoprene rubber

Polyisoprenes

Polyisoprenes rubber

Polyisoprene—Natural Rubber

© 2024 chempedia.info