Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Alkenes naturally occurring

Alkenes are hydrocarbons that contain a carbon-carbon double bond A carbon-carbon double bond is both an important structural unit and an important func tional group m organic chemistry The shape of an organic molecule is influenced by the presence of this bond and the double bond is the site of most of the chemical reactions that alkenes undergo Some representative alkenes include isobutylene (an industrial chemical) a pmene (a fragrant liquid obtained from pine trees) md fame sene (a naturally occurring alkene with three double bonds)... [Pg.187]

Many naturally occurring substances are epoxides You have seen two examples of such compounds already m disparlure the sex attractant of the gypsy moth (Section 6 18) and m the carcinogenic epoxydiol formed from benzo[a]pyrene (Section 118) In most cases epoxides are biosynthesized by the enzyme catalyzed transfer of one of the oxy gen atoms of an O2 molecule to an alkene Because only one of the atoms of O2 is trans ferred to the substrate the enzymes that catalyze such transfers are classified as monooxy genases A biological reducing agent usually the coenzyme NADH (Section 15 11) is required as well... [Pg.684]

Among chiral dialkylboranes, diisopinocampheylborane (8) is the most important and best-studied asymmetric hydroborating agent. It is obtained in both enantiomeric forms from naturally occurring a-pinene. Several procedures for its synthesis have been developed (151—153). The most convenient one, providing product of essentially 100% ee, involves the hydroboration of a-pinene with borane—dimethyl sulfide in tetrahydrofuran (154). Other chiral dialkylboranes derived from terpenes, eg, 2- and 3-carene (155), limonene (156), and longifolene (157,158), can also be prepared by controlled hydroboration. A more tedious approach to chiral dialkylboranes is based on the resolution of racemates. /n j -2,5-Dimethylborolane, which shows excellent enantioselectivity in the hydroboration of all principal classes of prochiral alkenes except 1,1-disubstituted terminal double bonds, has been... [Pg.311]

In the Chapter 6 Focus On, "Terpenes Naturally Occurring Alkenes," we looked briefly at terpenoids, a vast and diverse group of lipids found in all living organisms. Despite their apparent structural differences, all terpenoids are related. All contain a multiple of five carbons and are derived biosynthetically from the five-carbon precursor isopentenyl diphosphate (Figure 27.6). Note that formally, a... [Pg.1070]

Addition to alkenes of the form RCH=CH2 has been made enantioselective, and addition to RCH=CHR both diastereoselective enantioselective, by using optically active amines, such as 81,82 (derivatives of the naturally occurring quinine... [Pg.1050]

Organosilicon compounds are widely used in our daily life as oil, grease, rubbers, cosmetics, medicinal chemicals, etc. However, these compounds are not naturally occurring substances but artificially produced ones (for reviews of organosilicon chemistry, see [59-64]). Hydrosilylation reactions catalyzed by a transition-metal catalyst are one of the most powerful tools for the synthesis of organosilicon compounds. Reaction of an unsaturated C-C bond such as alkynes or alkenes with hydrosilane affords a vinyl- or alkylsilane, respectively (Scheme 16). [Pg.44]

Isoprene may be the naturally occurring alkene with the greatest economic impact. This compound, a major component of the sap of the rubber tree, is used to make the long-chain molecules of natural rubber (polyisoprene). As we describe in Chapter 13. the synthetic rubbers that make up most of today s tires are made from other alkenes. [Pg.686]

The earliest reported Fxs were the result of the reaction of nitrous acid with naturally occurring alkenes being the identified intermediate a a-nitrooxime that suffers dehydration with cyclization. Apart from these conditions, the most recent Fxs synthesis descriptions have involved reactions between alkenes and dinitrogen trioxide (Fig. 3), nitroalkanes and aluminum trichlo-... [Pg.269]

A short enantioselective synthesis of (-)-(R,R)-pyrenophorin, a naturally occurring anti-fun-gal 16-membered macrolide dilactone, is prepared from (S)-5-nitropentan-2-ol via the Michael addition and Nef reaction (Scheme 4.23).162 The choice of base is important to get the E-alkene in the Michael addition, for other bases give a mixture of E and Z-alkenes. The requisite chiral (S)-5-nitropentan-2-ol is prepared by enantioselective reduction of 5-nitropentan-2-one with baker s yeast.163... [Pg.108]

The auxihary acrylates 161 and 162 have been used in 1,3-dipolar cycloadditions with nitrile oxides. The camphor-derived acrylate 161 underwent a 1,3-dipolar cycloaddition with benzonitrile oxide with up to 56% de (Scheme 12.51) (263). The auxiliary in acrylate 162 is derived from naturally occurring L-quebrachitol, and provided an effective shielding of the re-face of the alkene in the reaction with benzonitrile oxide, as 90% de was obtained (273). Compound 163 was used in a reaction with the nitrone 1-pyrrole-1-oxide, and the reaction proceeded to give a complex mixture of products (274). [Pg.853]

Rh-mediated dipolar cycloadditions of diazoquinolinediones 31 with alkenes and alkynes have been investigated. Because of the unsymmetrical nature of the diazo compounds, both linear and angular furoquinoxaline products are possible. In most cases a mixture of tegioisomers was obtained. This methodology has been used for the synthesis of naturally occurring alkaloids, e.g., isodictamnine 32 (R = H) <99JOC3642>. [Pg.154]

Gab, S E. Hellpointner, W. V. Turner, and F. Korte, Hydroxymethyl hydroperoxide and Bis(hydroxymethyl)-peroxide from Gas Phase Ozonolysis of Naturally Occurring Alkenes, Nature, 316, 535-536 (1985). [Pg.253]

The amide [Sm(45a) N(SiMe3)2 ] was a catalyst for an aUene-based hydroamination/ cyclisation. As an illustration, one such product upon hydrogenation yielded a naturally occurring alkaloid. Scheme 4.8. " " The same samarium(lll) amide was also active for the intramolecular hydrophosphination/cyclisation of phosphino-alkenes or -alkynes e.g., H2P(CH2)3C=CPh was transformed into 76. " ... [Pg.102]

Thallium(lII) trifluoroacetate is a versatile oxidant for organic compounds [55, 56, 57] It reacts with alkenes at room temperature to form oxiranes, ketones, and 1,2 diols [55] Usually these oxidations are accompanied by cyclizations and rearrangements The reaction of thallium(III) trifluoroacetate with substituted cinnamic acids results in instantaneous oxidative dimerization leading to bislactone lignans, which belong to a naturally occurring family of compounds [56] (equation 26)... [Pg.951]

We also discuss the conformations of cycloalkanes, especially cyclohexane, in detail because of their importance to the chemistry of many kinds of naturally occurring organic compounds. Some attention also will be paid to polycyclic compounds, substances with more than one ring, and to cyclo-alkenes and cycloalkynes. [Pg.445]

Sharpless epoxidation of (E)-(l,2-dialkyl)vinylsilanols 13, prepared from hydrolysis of ( )-( 1,2-dialkyl )vinyldimethylbutoxysilanes 12, gave silylepoxides 14, which were treated with Et4NF in MeCN to afford epoxides 15 in 62-70% overall yield and 44-70% ee (Scheme 6AA.6).7 The overall transformation can be considered as asymmetric epoxidation of simple internal alkenes. This approach was applied to the synthesis of a naturally occurring insect sex pheromone (+)-disparlure.7... [Pg.284]

Stereoselective intermolecular photoadditions of alkenes to enones have been elegantly utilized in the synthesis of naturally occurring compounds or compounds of special interest. Sato and collaborators100 have applied the photoaddition of dioxinone 208 to the chiral r/.v-diol 207 for a one-pot synthesis of the Corey lactone 210, which possesses considerable utility in the preparation of prostaglandin derivatives (Scheme 45). [Pg.679]

The reaction has been extensively used for the determination of the structure of naturally occurring bases (e.g. the alkaloids). However it has rather limited preparative value, even though the elimination reaction occurs without any rearrangement of the carbon skeleton, and the regioisomer which predominates in the product is the less highly substituted alkene (Hofmann rule contrast the Saytzeff rule). Such alkenes are now more usually prepared by other procedures noted below. [Pg.489]

Since H202 is easier to handle than 02, we will focus on the use of the former. Many metals can be used for this transformation [50]. Among them, iron compounds are of interest as mimics of naturally occurring non-heme catalysts such as methane monooxygenase (MMO) [51a] or the non-heme anti-tumor drug bleomycin [51b]. Epoxidation catalysts should meet several requirements in order to be suitable for this transformation [50]. Most importantly they must activate the oxidant without formation of radicals as this would lead to Fenton-type chemistry and catalyst decomposition. Instead, heterolytic cleavage of the 0—0 bond is desired. In some cases, alkene oxidation furnishes not only epoxides but also diols. The latter transformation will be the topic of the following section. [Pg.80]

For alkene dihydroxylations, heavy metal oxides such as 0s04 and Ru04 can be applied. They are efficient catalysts but their toxitity makes their use less desirable and there is a dear need for non-toxic metal catalysts. Nevertheless, only a few reports have focused on the use of iron catalysts for alkene dihydroxylations. All systems described so far try to model the naturally occurring Rieske dioxygenase, an enzyme responsible for the biodegradation of arenes via cis-dihydroxylation by soil baderia [66]. [Pg.82]


See other pages where Alkenes naturally occurring is mentioned: [Pg.175]    [Pg.181]    [Pg.202]    [Pg.399]    [Pg.242]    [Pg.122]    [Pg.284]    [Pg.18]    [Pg.95]    [Pg.54]    [Pg.76]    [Pg.793]    [Pg.898]    [Pg.903]    [Pg.131]    [Pg.265]    [Pg.375]    [Pg.227]    [Pg.691]    [Pg.1078]    [Pg.711]    [Pg.88]    [Pg.45]    [Pg.198]    [Pg.440]    [Pg.97]    [Pg.228]   
See also in sourсe #XX -- [ Pg.187 , Pg.189 ]

See also in sourсe #XX -- [ Pg.187 , Pg.189 ]

See also in sourсe #XX -- [ Pg.187 , Pg.189 ]

See also in sourсe #XX -- [ Pg.167 , Pg.168 ]

See also in sourсe #XX -- [ Pg.188 ]

See also in sourсe #XX -- [ Pg.179 ]




SEARCH



A DEEPER LOOK Terpenes Naturally Occurring Alkenes

Focus On... Terpenes Naturally Occurring Alkenes

Natural Occurence

Naturally-occurring

Terpenes Naturally Occurring Alkenes

© 2024 chempedia.info