Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymerisation double bond

The nonreactive NAD are structures without polymerisable double bonds, but have a remarkable stabilisation effect on polymeric dispersions in polyether media. The main characteristic of such kinds of nonreactive NAD is to have an organic segment with high affinity for the carbocatenary vinylic polymer chemically linked to a high molecular weight polyether chain, which has a high affinity for the continuous liquid polyether matrix. [Pg.204]

An unsaturated polyester resin has two primary components, a polyester containing polymerisable double bonds and a copolymerisable solvent monomer, of which the most commonly used is styrene. Unsaturated polyesters are made by esterification of glycols with mixtures of maleic anhydride and saturated diacids (Structure 9.1). The term alkyd is used to describe low-molecular-weight polyesters, where molecular weight is broadly... [Pg.427]

Molecular architecture can be influenced by the addition of a monomer that has two or more free-radically polymerisable double bonds. The addition level and reactivity of such a monomer, together with the average chain length of the polymer chains, will determine whether the final product is branched (two dimensional) or cross-linked (three dimensional). [Pg.142]

Synthesis of new ILs possessing a high conductivity and a polymerisable double bond which can lead, after polymerization, to a novel family of polymer electrolytes. Development of new synthetic methods from (meth) acrylic compoimds which provide simple and efficient ILs containing a carboxylate function. [Pg.84]

The photografting kinetics of a hindered amine light stabiliser (HALS) containing a polymerisable double bond in low density polyethylene (LDPE) films was studied under natural weathering conditions. The HALS (PBH-3, chemical structure shown) was added to the polymer at a concentration of 0.3 wt.%. The photografting kinetics... [Pg.47]

Dow catalysts have a high capabihty to copolymetize linear a-olefias with ethylene. As a result, when these catalysts are used in solution-type polymerisation reactions, they also copolymerise ethylene with polymer molecules containing vinyl double bonds at their ends. This autocopolymerisation reaction is able to produce LLDPE molecules with long-chain branches that exhibit some beneficial processing properties (1,2,38,39). Distinct from other catalyst systems, Dow catalysts can also copolymerise ethylene with styrene and hindered olefins (40). [Pg.399]

For all three diallyl phthalate isomers, gelation occurs at nearly the same conversion DAP prepolymer contains fewer reactive allyl groups than the other isomeric prepolymers (36). More double bonds are lost by cyclisation in DAP polymerisation, but this does not affect gelation. The heat-distortion temperature of cross-linked DAP polymer is influenced by the initiator chosen and its concentration (37). Heat resistance is increased by electron beam irradiation. [Pg.84]

The terminal double bond is active with respect to polymerisation, whereas the internal unsaturation remains in the resulting terpolymer as a pendent location for sulfur vulcanisation. The polymer is poly(ethylene- (9-prop5iene- (9-l,4-hexadiene) [25038-37-3]. [Pg.503]

Polystyrene, similarly, is made by the polymerisation of styrene (left), again by sacrificing the double bond to provide the hooks which give the chain ... [Pg.53]

A copolymer is made by polymerisation of two monomers, adding them randomly (a random copolymer) or in an ordered way (a block copolymer). An example is styrene-butadiene rubber, SBR. Styrene, extreme left, loses its double bond in the marriage butadiene, richer in double bonds to start with, keeps one. [Pg.53]

In addition polymerisation a simple, low molecular weight molecule, referred to in this context as a monomer, which possesses a double bond, is induced to break the double bond and the resulting free valences are able to join up to other similar molecules. For example poly(vinyl chloride) is produced by the double bonds of vinyl chloride molecules opening up and linking together (Figure 2.1). [Pg.20]

In the above examples the polymerisation takes place by the opening of a carbon-carbon double bond. It is also possible to open carbonyl carbon-oxygen double bonds and nitrile carbon-nitrogen triple bonds. An example of the former is the polymerisation of formaldehyde to give polyformaldehyde (also known as polyoxymethylene and polyacetal) (Figure 2.3). [Pg.20]

One other variant in double-bond polymerisations may be mentioned here. Many conjugated dienes may be polymerised in such a way as to generate long chain molecules with residual double bonds in the chain. Well-known examples of such dienes are buta-1,3-diene and isoprene, which yield 1,4-polybutadiene and 1,4-polyisoprene respectively (Figure 2.4). Natural rubber has a formula corresponding to the 1,4-polyisoprene. [Pg.20]

An alternative route to cross-linking is to start with a linear polymer and then cross-link the molecules by tying the molecule through some reactive group. For example, it is possible to cross-link unsaturated polyesters by an addition polymerisation across the double bond as shown schematically in Figure 2.12. [Pg.24]

Addition polymerisation is effected by the activation of the double bond of a vinyl monomer, thus enabling it to link up to other molecules. It has been shown that this reaction occurs in the form of a chain addition process with initiation, propagation and termination steps. [Pg.24]

The process of anionic polymerisation was first used some 60 or more years ago in the sodium-catalysed production of polybutadiene (Buna Rubbers). Typical catalysts include alkali metals, alkali metal alkyls and sodium naphthalene, and these may be used for opening either a double bond or a ring structure to bring about polymerisation. Although the process is not of major importance with the production of plastics materials, it is very important in the production of synthetic rubbers. In addition the method has certain special features that make it of particular interest. [Pg.35]

Polymerisation of conjugated dienes can frequently lead to the formation of linear polymers containing main chain double bonds. Examples of such diene... [Pg.280]

The close structural similarities between polychloroprene and the natural rubber molecule will be noted. However, whilst the methyl group activates the double bond in the polyisoprene molecule the chlorine atom has the opposite effect in polychloroprene. Thus the polymer is less liable to oxygen and ozone attack. At the same time the a-methylene groups are also deactivated so that accelerated sulphur vulcanisation is not a feasible proposition and alternative curing systems, often involving the pendant vinyl groups arising from 1,2-polymerisation modes, are necessary. [Pg.295]

The monomer, norbomene (or bicyclo[2.2.l]hept-2-ene), is produced by the Diels-Alder addition of ethylene to cyclopentadiene. The monomer is polymerised by a ring-opening mechanism to give a linear polymer with a repeat unit containing both an in-chain five-membered ring and a double bond. Both cis-and trans- structures are obtainable according to the choice of catalyst used ... [Pg.306]

Acrylic and methacrylic acids and their esters are highly versatile materials in that the acid and ester side groups can partake in a variety of reactions to produce a very large number of polymerisable monomers. One particularly interesting approach is that in which two methacrylic groupings are linked together so that there are two, somewhat distant, double bonds in the molecule. In these cases it is possible to polymerise through each of these double bonds separately and this will lead eventually to a cross-linked network structure. [Pg.418]

Whilst the ASA materials are of European origin, the AES polymers have been developed in Japan and the US. The rubber used is an ethylene-propylene terpolymer rubber of the EPDM type (see Chapter 11) which has a small amount of a diene monomer in the polymerisation recipe. The residual double bonds that exist in the polymer are important in enabling grafting with styrene and acrylonitrile. The blends are claimed to exhibit very good weathering resistance but to be otherwise similar to ABS. [Pg.449]

If the bismaleimide-amine reaction is carried out with a deficiency of amine the polymer will have terminal double bonds which allows a cure site to give a thermosetting polymer via a double bond polymerisation mechanism. This approach was developed by Ciba-Geigy with their product P13N (Figure 18.42). [Pg.522]

On heating with a peroxide, diallyl phthalate will polymerise and eventually cross-link because of the presence of two double bonds (Figure 25.13). [Pg.712]

Loss of unsaturation during cross-linking indicates that this reaction is essentially a form of double bond polymerisation, viz Figure 28.3. [Pg.811]

This is a linear polyester containing phthalic anhydride to ensure hydrocarbon solubility and maleic anhydride to enable copolymerisation to take place, esterified with 2-propanediol. The ester is dissolved in styrene which initially acts as the solvent and subsequently as film former when it is copolymerised with the double bond in the ester by free radical induced polymerisation. [Pg.676]


See other pages where Polymerisation double bond is mentioned: [Pg.248]    [Pg.193]    [Pg.193]    [Pg.340]    [Pg.43]    [Pg.248]    [Pg.193]    [Pg.193]    [Pg.340]    [Pg.43]    [Pg.282]    [Pg.564]    [Pg.496]    [Pg.395]    [Pg.80]    [Pg.355]    [Pg.503]    [Pg.52]    [Pg.21]    [Pg.23]    [Pg.24]    [Pg.34]    [Pg.38]    [Pg.129]    [Pg.281]    [Pg.438]    [Pg.440]    [Pg.448]    [Pg.522]    [Pg.413]    [Pg.36]   
See also in sourсe #XX -- [ Pg.23 ]

See also in sourсe #XX -- [ Pg.23 ]

See also in sourсe #XX -- [ Pg.23 ]




SEARCH



Polymerisation by the opening of a double bond (e.g. ethylene)

© 2024 chempedia.info