Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron complex catalyst

In a more recent report from Seki and Murai, Fe3(CO)i2 is shown to exhibit complete selectivity in the catalytic dehydrogenative silylation of styrenes.32 No products resulting from hydrosilylation are observed with the iron complex catalyst, in comparison to the minor amounts of hydrosilylated... [Pg.203]

The use of transition metal complexes as catalysts allows 1,4-cycloadditions to be involved as the major pathway in several cases when conjugated dienes are reacted with norbornadiene. No normal homo-Diels-Alder reaction was observed by reaction of the latter with buta-1,3-diene in the presence of an iron complex catalyst, the main product obtained was such a 1,4-adduct 2f the same adduct 2 was obtained in good yield and selectivity when a catalyst formed from cobalt(II) chloride, diethylaluminum chloride and bis(l,2-diphenylphos-phinojethane was used. ... [Pg.986]

Deshpande, R. M. Mahajan, A. N. Diwakar, M. M. Ozarde, P. S. Chaudhari, R. V. Chemoselective hydrogenation of substituted nitroaromatics using novel water-soluble iron complex catalysts. J. Org. Chem. 2004, 69, 4835 838. [Pg.314]

Kotani Y, Kamigaito M, Sawamoto, M. Living radical polymerization of para-substituted styrenes and synthesis of styrene-based copolymers with rhenium and iron complex catalysts. Macromolecules 2000 33 6746-6751. [Pg.270]

Gif family chemistry" originally provided an alkane hydroxylation system by using an iron complex catalyst, zinc powder, acetic acid and pyridine under dioxygen as shown in eq. (8) [91]. [Pg.358]

Cyclopentadiene itself has been used as a feedstock for carbon fiber manufacture (76). Cyclopentadiene is also a component of supported metallocene—alumoxane polymerization catalysts in the preparation of syndiotactic polyolefins (77), as a nickel or iron complex in the production of methanol and ethanol from synthesis gas (78), and as Group VIII metal complexes for the production of acetaldehyde from methanol and synthesis gas (79). [Pg.435]

An even more effective homogeneous hydrogenation catalyst is the complex [RhClfPPhsfs] which permits rapid reduction of alkenes, alkynes and other unsaturated compounds in benzene solution at 25°C and 1 atm pressure (p. 1134). The Haber process, which uses iron metal catalysts for the direct synthesis of ammonia from nitrogen and hydrogen at high temperatures and pressures, is a further example (p. 421). [Pg.43]

The cationic aqua complexes prepared from traws-chelating tridentate ligand, R,R-DBFOX/Ph, and various transition metal(II) perchlorates induce absolute enantio-selectivity in the Diels-Alder reactions of cyclopentadiene with 3-alkenoyl-2-oxazoli-dinone dienophiles. Unlike other bisoxazoline type complex catalysts [38, 43-54], the J ,J -DBFOX/Ph complex of Ni(C104)2-6H20, which has an octahedral structure with three aqua ligands, is isolable and can be stored in air for months without loss of catalytic activity. Iron(II), cobalt(II), copper(II), and zinc(II) complexes are similarly active. [Pg.250]

Que and coworkers reported on a similar monomeric iron complex, formed with the BPMEN ligand but without acetic acid [128]. This complex was able to epoxidize cyclooctene in reasonably good yield (75%), but at the same time a small amount of the ris-diol (9 %) was formed. This feature observed with this class of complexes has been further studied and more selective catalysts have been prepared. Even though poor levels of conversion are often obtained with the current... [Pg.220]

Table 9.7 Iron Complexes Used as ATRP Catalysts... Table 9.7 Iron Complexes Used as ATRP Catalysts...
Ligands of type 48 were synthesized by the cyclization reaction of diamines with dithioaldehydes. Iron complexes formed with those structures led, however, to active but weakly enantioselective catalysts. The best results were... [Pg.110]

Abstract Organic syntheses catalyzed by iron complexes have attracted considerable attention because iron is an abundant, inexpensive, and environmentally benign metal. It has been documented that various iron hydride complexes play important roles in catalytic cycles such as hydrogenation, hydrosilylation, hydro-boration, hydrogen generation, and element-element bond formation. This chapter summarizes the recent developments, mainly from 2000 to 2009, of iron catalysts involving hydride ligand(s) and the role of Fe-H species in catalytic cycles. [Pg.27]

Precious metals have faced a significant price increase and the fear of depletion. By contrast, iron is a highly abundant metal in the crust of the earth (4.7 wt%) of low toxicity and price. Thus, it can be defined as an environmentally friendly material. Therefore, iron complexes have been studied intensively as an alternative for precious-metal catalysts within recent years (for reviews of iron-catalyzed organic reactions, see [12-20]). The chemistry of iron complexes continues to expand rapidly because these catalysts play indispensable roles in today s academic study as well as chemical industry. [Pg.29]

Bis(imino)pyridine iron complex 5 as a highly efficient catalyst for a hydrogenation reaction was synthesized by Chirik and coworkers in 2004 [27]. Complex 5 looks like a Fe(0) complex, but detailed investigations into the electronic structure of 5 by metrical data, Mossbauer parameters, infrared and NMR spectroscopy, and DFT calculations established the Fe(ll) complex described as 5 in Fig. 2 to be the higher populated species [28]. [Pg.31]

Table 2 Comparison of iron complexes with transition precious-metal catalysts for the hydrogenation of 1-hexene... Table 2 Comparison of iron complexes with transition precious-metal catalysts for the hydrogenation of 1-hexene...
Bis(imino)pyridine iron complex 5 acts as a catalyst not only for hydrogenation (see 2.1) but also for hydrosilylation of multiple bonds [27]. The results are summarized in Table 10. The reaction rate for hydrosilylations is slower than that for the corresponding hydrogenation however, the trend of reaction rates is similar in each reaction. In case of tra s-2-hexene, the terminal addition product hexyl (phenyl)silane was obtained predominantly. This result clearly shows that an isomerization reaction takes place and the subsequent hydrosilylation reaction dehvers the corresponding product. Reaction of 1-hexene with H2SiPh2 also produced the hydrosilylated product in this system (eq. 1 in Scheme 18). However, the reaction rate for H2SiPh2 was slower than that for H3SiPh. In addition, reaction of diphenylacetylene as an atkyne with phenylsilane afforded the monoaddition product due to steric repulsion (eq. 2 in Scheme 18). [Pg.45]

An iron complex-catalyzed asymmetric hydrosilylation of ketones was achieved by using chiral phosphoms ligands [68]. Among various ligands, the best enantios-electivities (up to 99% ee) were obtained using a combination of Fe(OAc)2/(5,5)-Me-Duphos in THF. This hydrosilylation works smoothly in other solvents (diethylether, n-hexane, dichloromethane, and toluene), but other iron sources are not effective. Surprisingly, this Fe catalyst (45% ee) was more efficient in the asymmetric hydrosilylation of cyclohexylmethylketone, a substrate that proved to be problematic in hydrosilylations using Ru [69] or Ti [70] catalysts (43 and 23% ee, respectively). [Pg.48]

Interestingly, the activity of the corresponding cobalt catalyst possessing a pincer-type ligand is higher than that of the iron complex. In addition, the cobalt complex also acts as a catalyst in asymmetric mtermolecular cyclopropanations. [Pg.49]

The comparison of a bis(imino)pyridine iron complex and a pyridine bis (oxazoline) iron complex in hydrosilylation reactions is shown in Scheme 24 [73]. Both iron complexes showed efficient activity at 23°C and low to modest enantioselectivites. However, the steric hindered acetophenone derivatives such as 2, 4, 6 -trimethylacetophenone and 4 -ferf-butyl-2, 6 -dimethylacetophenone reacted sluggishly. The yields and enantioselectivities increased slightly when a combination of iron catalyst and B(CeF5)3 as an additive was used. [Pg.49]

The corresponding iron-catalyzed oligomerization of ethylene was developed by Gibson and coworkers [125]. A combination of an iron precatalyst with MAO (methyl aluminoxane) yields a catalyst that affords ethylene oligomers (>99% linear ot-olefin mixtures). The activity of ketimine iron complexes (R = Me) is higher than that of the aldimine analogs (R = H) and also the a-value of the oligomer is better (Scheme 41). [Pg.58]

A head-to-head dimerization of a-olefin catalyzed by a bis(imino)pyridine iron complex has been reported by Small and Marcucci [126]. This reaction delivers linear internal olefins (up to 80% linearity) from a-oleftns. The linearity of products, however, depends on the catalyst structure and the reaction conditions. [Pg.58]

Transition-metal catalyzed photochemical reactions for hydrogen generation from water have recently been investigated in detail. The reaction system is composed of three major components such as a photosensitizer (PS), a water reduction catalyst (WRC), and a sacrificial reagent (SR). Although noble-metal complexes as WRC have been used [214—230], examples for iron complexes are quite rare. It is well known that a hydride as well as a dihydrogen (or dihydride) complex plays important roles in this reaction. [Pg.72]

The immobilization of metal catalysts onto sohd supports has become an important research area, as catalyst recovery, recycling as well as product separation is easier under heterogeneous conditions. In this respect, the iron complex of the Schiff base HPPn 15 (HPPn = iVA -bis(o-hydroxyacetophenone) propylene diamine) was supported onto cross-linked chloromethylated polystyrene beads. Interestingly, the supported catalyst showed higher catalytic activity than the free metal complex (Scheme 8) [50, 51]. In terms of chemical stability, particularly with... [Pg.89]

Inspired by Gif or GoAgg type chemistry [77], iron carboxylates were investigated for the oxidation of cyclohexane, recently. For example, Schmid and coworkers showed that a hexanuclear iron /t-nitrobenzoate [Fe603(0H) (p-N02C6H4C00)n(dmf)4] with an unprecedented [Fe6 03(p3-0)(p2-0H)] " core is the most active catalyst [86]. In the oxidation of cyclohexane with only 0.3 mol% of the hexanuclear iron complex, total yields up to 30% of the corresponding alcohol and ketone were achieved with 50% H2O2 (5.5-8 equiv.) as terminal oxidant. The ratio of the obtained products was between 1 1 and 1 1.5 and suggests a Haber-Weiss radical chain mechanism [87, 88] or a cyclohexyl hydroperoxide as primary oxidation product. [Pg.94]

In addition to nonheme iron complexes also heme systems are able to catalyze the oxidation of benzene. For example, porphyrin-like phthalocyanine structures were employed to benzene oxidation (see also alkane hydroxylation) [129], Mechanistic investigations of this t3 pe of reactions were carried out amongst others by Nam and coworkers resulting in similar conclusions like in the nonheme case [130], More recently, Sorokin reported a remarkable biological aromatic oxidation, which occurred via formation of benzene oxide and involves an NIH shift. Here, phenol is obtained with a TON of 11 at r.t. with 0.24 mol% of the catalyst. [Pg.101]

Previous studies by Sorokin with iron phthalocyanine catalysts made use of oxone in the oxidation of 2,3,6-trimethylphenol [134]. Here, 4 equiv. KHSO5 were necessary to achieve full conversion. Otherwise, a hexamethyl-biphenol is observed as minor side-product. Covalently supported iron phthalocyanine complexes also showed activity in the oxidation of phenols bearing functional groups (alcohols, double bonds, benzylic, and allylic positions) [135]. Besides, silica-supported iron phthalocyanine catalysts were reported in the synthesis of menadione [136]. [Pg.101]


See other pages where Iron complex catalyst is mentioned: [Pg.692]    [Pg.521]    [Pg.28]    [Pg.284]    [Pg.99]    [Pg.111]    [Pg.692]    [Pg.521]    [Pg.28]    [Pg.284]    [Pg.99]    [Pg.111]    [Pg.52]    [Pg.366]    [Pg.488]    [Pg.271]    [Pg.220]    [Pg.595]    [Pg.637]    [Pg.139]    [Pg.191]    [Pg.321]    [Pg.1053]    [Pg.79]    [Pg.40]    [Pg.40]    [Pg.72]    [Pg.84]    [Pg.87]    [Pg.96]   


SEARCH



Iron complex-based catalysts

Iron complex-based catalysts activation chemistry

Iron, catalyst

© 2024 chempedia.info