Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Iron complex-based catalysts

Dehydrogenation, Ammoxidation, and Other Heterogeneous Catalysts. Cerium has minor uses in other commercial catalysts (41) where the element s role is probably related to Ce(III)/Ce(IV) chemistry. Styrene is made from ethylbenzene by an alkah-promoted iron oxide-based catalyst. The addition of a few percent of cerium oxide improves this catalyst s activity for styrene formation presumably because of a beneficial interaction between the Fe(II)/Fe(III) and Ce(III)/Ce(IV) redox couples. The ammoxidation of propjiene to produce acrylonitrile is carried out over catalyticaHy active complex molybdates. Cerium, a component of several patented compositions (42), functions as an oxygen and electron transfer through its redox couple. [Pg.371]

This paper reviews the recent studies in the field of radical reactions of organobromine compounds. A special attention is paid to the use of metal-complex systems based on iron pentacarbonyl as catalysts this makes it possible to perform the initiation and chain transfer reactions selectively at C-Br bond. [Pg.180]

The immobilization of metal catalysts onto sohd supports has become an important research area, as catalyst recovery, recycling as well as product separation is easier under heterogeneous conditions. In this respect, the iron complex of the Schiff base HPPn 15 (HPPn = iVA -bis(o-hydroxyacetophenone) propylene diamine) was supported onto cross-linked chloromethylated polystyrene beads. Interestingly, the supported catalyst showed higher catalytic activity than the free metal complex (Scheme 8) [50, 51]. In terms of chemical stability, particularly with... [Pg.89]

Traditionally, iron-based catalysts have been used for FT synthesis when the syngas is coal derived, because of their activity in both FTS and WGS reactions. Complex mixtures of straight-chain paraffins, olefins, and oxygenate (in substantial proportions) compounds are known to be formed during iron-based FTS. Olefin selectivity of iron catalysts is typically greater than 50% of the hydrocarbon products at low carbon numbers, and more than 60% of the produced olefins are a-olefins.13 For iron-based catalysts, the olefin selectivity decreases asymptotically with increasing carbon number. [Pg.281]

Iron-based catalysts have been used in all the plants constructed after the war, because (a) iron is considerably cheaper than cobalt, (b) iron systems are generally more stable, and (c) greater flexibility with regard to product distribution can be attained. With the exception of the SASOL complex, which will be dealt with in Section I,B, the only Fischer-Tropsch plant of any appreciable size constructed in the West since the... [Pg.63]

Carbonvlation of Benzyl Halides. Several organometallic reactions involving anionic species in an aqueous-organic two-phase reaction system have been effectively promoted by phase transfer catalysts(34). These include reactions of cobalt and iron complexes. A favorite model reaction is the carbonylation of benzyl halides using the cobalt tetracarbonyl anion catalyst. Numerous examples have appeared in the literature(35) on the preparation of phenylacetic acid using aqueous sodium hydroxide as the base and trialkylammonium salts (Equation 1). These reactions occur at low pressures of carbon monoxide and mild reaction temperatures. Early work on the carbonylation of alkyl halides required the use of sodium amalgam to generate the cobalt tetracarbonyl anion from the cobalt dimer(36). [Pg.146]

A nickel-based catalyst system, which produces, in the absence of comonomers, highly short-chain branched polyethene was developed by Brookhart et al. [23]. Independently, the groups of Brookhart [24, 25, 26] and Gibson [27, 28, 29, 30] developed efficient iron- and cobalt-based catalyst systems. Nickel or palladium is typically sandwiched between two a-di-imine ligands, while iron and cobalt are tridentate complexed with imino and pyridyl ligands. [Pg.3]


See other pages where Iron complex-based catalysts is mentioned: [Pg.373]    [Pg.377]    [Pg.379]    [Pg.381]    [Pg.383]    [Pg.385]    [Pg.387]    [Pg.389]    [Pg.391]    [Pg.395]    [Pg.399]    [Pg.401]    [Pg.403]    [Pg.405]    [Pg.470]    [Pg.373]    [Pg.377]    [Pg.379]    [Pg.381]    [Pg.383]    [Pg.385]    [Pg.387]    [Pg.389]    [Pg.391]    [Pg.395]    [Pg.399]    [Pg.401]    [Pg.403]    [Pg.405]    [Pg.470]    [Pg.227]    [Pg.792]    [Pg.30]    [Pg.366]    [Pg.488]    [Pg.271]    [Pg.321]    [Pg.40]    [Pg.72]    [Pg.96]    [Pg.104]    [Pg.113]    [Pg.65]    [Pg.120]    [Pg.64]    [Pg.669]    [Pg.534]    [Pg.281]    [Pg.384]    [Pg.340]    [Pg.96]    [Pg.147]    [Pg.133]    [Pg.199]    [Pg.183]   
See also in sourсe #XX -- [ Pg.402 ]




SEARCH



Complex-based Catalysts

Iron bases

Iron complexes catalysts

Iron, catalyst

© 2024 chempedia.info