Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic vapor pressure

Phosphoric Acid Fuel Cell. Concentrated phosphoric acid is used for the electrolyte ia PAFC, which operates at 150 to 220°C. At lower temperatures, phosphoric acid is a poor ionic conductor (see Phosphoric acid and the phosphates), and CO poisoning of the Pt electrocatalyst ia the anode becomes more severe when steam-reformed hydrocarbons (qv) are used as the hydrogen-rich fuel. The relative stabiUty of concentrated phosphoric acid is high compared to other common inorganic acids consequentiy, the PAFC is capable of operating at elevated temperatures. In addition, the use of concentrated (- 100%) acid minimizes the water-vapor pressure so water management ia the cell is not difficult. The porous matrix used to retain the acid is usually sihcon carbide SiC, and the electrocatalyst ia both the anode and cathode is mainly Pt. [Pg.579]

Ionic polymers are also formulated from TDI and MDI (43). Poly(urethane urea) and polyurea ionomers are obtained from divalent metal salts of /)-aminohen2oic acid, MPA, dialkylene glycol, and 2,4-TDI (44). In the case of polyureas, the glycol extender is omitted. If TDI is used in coatings apphcations, it is usually converted to a derivative to lower the vapor pressure. A typical TDI prepolymer is the adduct of TDI with trimethyl olpropane (Desmodur L). Carbodiimide-modified MDI offers advantages in polyester-based systems because of improved hydrolytic stabihty (45). Moisture cure systems based on aromatic isocyanates are also available. [Pg.350]

The lack of significant vapor pressure prevents the purification of ionic liquids by distillation. The counterpoint to this is that any volatile impurity can, in principle, be separated from an ionic liquid by distillation. In general, however, it is better to remove as many impurities as possible from the starting materials, and where possible to use synthetic methods that either generate as few side products as possible, or allow their easy separation from the final ionic liquid product. This section first describes the methods employed to purify starting materials, and then moves on to methods used to remove specific impurities from the different classes of ionic liquids. [Pg.17]

Probably the most prominent property of an ionic liquid is its lack of vapor pressure. Transition metal catalysis in ionic liquids can particularly benefit from this on economic, environmental, and safety grounds. [Pg.217]

Notwithstanding their very low vapor pressure, their good thermal stability (for thermal decomposition temperatures of several ionic liquids, see [11, 12]) and their wide operating range, the key property of ionic liquids is the potential to tune their physical and chemical properties by variation of the nature of the anions and cations. An illustration of their versatility is given by their exceptional solubility characteristics, which make them good candidates for multiphasic reactions (see Section 5.3.4). Their miscibility with water, for example, depends not only on the hydrophobicity of the cation, but also on the nature of the anion and on the temperature. [Pg.261]

Ionic liquids hold as much promise for inorganic and organometallic synthesis as they do for organic synthesis. Their lade of vapor pressure has already been exploited [13], as have their interesting solubility properties. The field can only be expected to accelerate from its slow beginnings. [Pg.293]

Safety risks and the environmental impact are of major importance for the practical success of bromine storage system. The nonaqueous polybromide complexes in general show excellent physical properties, such as good ionic conductivity (0.1-0.05 Qcirf1), oxidation stability (depending on the nature of the ammonium ion), and a low bromine vapor pressure. The concentration of active bromine in the aqueous solution is reduced by formation of the complex phase up to 0.01-0.05 mol/L, hence ensuring a decisive decrease of selfdischarge. [Pg.189]

Room temperature ionic liquids arc currently receiving considerable attention as environmentally friendly alternatives to conventional organic solvents in a variety of contexts.144 The ionic liquids have this reputation because of their high stability, inertness and, most importantly, extremely low vapor pressures. Because they are ionic and non-conducting they also possess other unique properties that can influence the yield and outcome of organic transformations. Polymerization in ionic liquids has been reviewed by Kubisa.145 Commonly used ionic liquids are tetra-alkylammonium, tetra-alkylphosphonium, 3-alkyl-l-methylimidazolium (16) or alkyl pyridinium salts (17). Counter-ions are typically PF6 and BF4 though many others are known. [Pg.432]

Wc have seen that molecular substances tend to have low melting points, while network, ionic, and metallic substances tend to have high melting points. Therefore, with a few exceptions, such as mercury, a substance that is liquid at room temperature is likely to he a molecular substance. Liquid solvents are heavily used in industry to extract substances from natural products and ro promote the synthesis of desired compounds. Because many of these solvents have high vapor pressures and so give off hazardous fumes, luinids that have low vapor pressures hut dissolve... [Pg.17]

Ionic compounds typically have higher boiling points and lower vapor pressures than covalent compounds. Predict which compound in the following pairs has the lower vapor pressure at room temperature (a) CEO or Na,0 (b) InCl, or SbCl, (c) LiH or HC1 (d) MgCl, or PCI,. [Pg.215]

A new class of solvents called ionic liquids has been developed to meet this need. A typical ionic liquid has a relatively small anion, such as BF4, and a relatively large, organic cation, such as l-butyl-3-methylimidazolium (16). Because the cation has a large nonpolar region and is often asymmetrical, the compound does not crystallize easily and so is liquid at room temperature. However, the attractions between the ions reduces the vapor pressure to about the same as that of an ionic solid, thereby reducing air pollution. Because different cations and anions can be used, solvents can be designed for specific uses. For example, one formulation can dissolve the rubber in old tires so that it can be recycled. Other solvents can be used to extract radioactive waste from groundwater. [Pg.327]

Ionic liquids are compounds in which one of the ions is a large, organic ion that prevents the liquid from crystallizing at ordinary temperatures. The low vapor pressures of ionic liquids make them desirable solvents that reduce pollution. [Pg.327]

Ionic liquids, which can be defined as salts that do not crystallize at room temperature [46], have been intensively investigated as environmentally friendly solvents because they have no vapor pressure and, in principle, can be reused more efficiently than conventional solvents. Ionic liquids have found wide application in organometallic catalysis as they facilitate the separation between the charged catalysts and the products. [Pg.14]

Recently, room temperature ionic liquids (RT-ILs) have attracted much attention for their excellent properties, e.g., wide temperature range of liquid phase, ultra-low vapor pressure, chemical stability, potential as green solvents, and high heat capacities [64,65]. These properties make them good candidates for the use in many fields, such as thermal storage [66], electrochemical applications, homogeneous catalysis [67], dye sensitized solar cells [68], and lubricants [69,70]. [Pg.54]

However, investigations up to now have mainly concentrated themselves on ambient environments even though it is known that ionic liquids have a very low vapor pressure, making them suitable for vacuum applications such as in space mechanisms, the disk drive industry, and microelec-tromechanical systems (MEMS). Due to the ultra-low vapor pressure of most ionic liquids, they have been expected to be good lubricants in vacuum. Further experimental works are required to evaluate lubrication behavior of ionic liquids under ultra-high vacuum conditions and in inert atmospheres. [Pg.55]

Recent developments for reactive C02 sorbents include sterically hindered amines such as 2-amino-2-methyl-l-propanol (AMP) and 1,8-p-methanediamine (MDA) and 2-piperidine ethanol (PE), which are claimed to have good reversible C02 capacity (Veawab et al., 1998) and low-temperature molten salts called ionic liquids (Bates et al., 2002). Ionic liquids are attractive due to their negligible vapor pressure up to their decomposition at... [Pg.295]

We have also demonstrated that well-behaved quantized charging of gold MPCs is possible in air- and water-stable room-temperature ionic liquids, such as 1-hexyl-3-methylimidazolium tris(penta-fluoroethyl)-trifluorophosphate (HMImEEP), Fig. 30c, d [334, 335]. As ionic liquids have very attractive features, including nearzero vapor pressure, considerable thermal stability, and an electrochemical stability window that often exceeds 4 V, this demonstration is particularly significant from a technological point of view. [Pg.177]

Water h2o Clear, colorless liquid with low vapor pressure, highly polar Dissolving polar and ionic compounds... [Pg.28]

To prove that this method can be applied also to solids with strong ionic bonding, NaCl was investigated as an example. Also in this case an aluminia Knudsen cell was used, the orifice diameter was calibrated with gold. Figure 69 shows a graphical presentation of the vapor pressure data obtained, compared with data from the literature (Kelly)68. ... [Pg.140]

A wide variety of data for mean ionic activity coefficients, osmotic coefficients, vapor pressure depression, and vapor-liquid equilibrium of binary and ternary electrolyte systems have been correlated successfully by the local composition model. Some results are shown in Table 1 to Table 10 and Figure 3 to Figure 7. In each case, the chemical equilibrium between the species has been ignored. That is, complete dissociation of strong electrolytes has been assumed. This assumption is not required by the local composition model but has been made here in order to simplify the systems treated. [Pg.75]


See other pages where Ionic vapor pressure is mentioned: [Pg.577]    [Pg.239]    [Pg.2025]    [Pg.3]    [Pg.43]    [Pg.44]    [Pg.86]    [Pg.148]    [Pg.264]    [Pg.303]    [Pg.466]    [Pg.1029]    [Pg.116]    [Pg.195]    [Pg.346]    [Pg.107]    [Pg.865]    [Pg.84]    [Pg.510]    [Pg.68]    [Pg.584]    [Pg.69]    [Pg.212]    [Pg.287]    [Pg.183]    [Pg.1391]    [Pg.488]    [Pg.300]    [Pg.56]   
See also in sourсe #XX -- [ Pg.421 , Pg.422 ]




SEARCH



Ionic liquids vapor pressure

Ionic pressure

Room temperature ionic liquids vapor pressure

Vapor pressure of ionic liquids

© 2024 chempedia.info