Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ionic liquids vapor pressure

Verevkin, S.R et al.. Thermodynamic properties of mixtures containing ionic liquids. Vapor pressures and activity coefficients of n-alcohols and benzene in binary mixtures with l-methyl-3-butyl-imidazolium bis(trifluoromethyl-sulfonyl)imide. Fluid Phase Equilib., 236, 222, 2005. [Pg.69]

Enthalpy of vaporization this is counterintuitive for ionic liquids, but they can be distilled and have a small but measurable vapor pressure. It seems that ionic liquids vaporize by forming neutral ionic pairs which leave the bulk fluid. Protic ionic liquids may also form two different molecules by acid-base reactions e.g. RNH + NO —t RNH3 + HNO3. Vaporization enthalpies can be calculated by extracting the enthalpy of the liquid and by subtracting a perfect gas calculation of the enthalpy of an equal number of gas phase ion pairs. [Pg.117]

This new Internet edition has added 13 new subsections that can be accessed as interactive tables. These include tables on atomic and molecular polarizabilities, diffusion in gases and liquids, vapor pressure and density of mercury, ionic radii in crystals, surface tension, and other topics. All material in the printed Handbook is accessible in the Internet version as interactive tables and/or pdf displays. [Pg.4]

For substances that do not partition into a phase (e.g., ionic species into air), the Z value is zero and a division by zero issue can arise when solving the mass balance equations. This can be circumvented by using aquivalence (essentially f/H) as the equilibrium criterion or activity (concentration in water/solubility in water or equivalently fugacity/vapor pressure). Indeed, when examining fugacities, it is desirable to calculate the activity to ensure that subsaturation conditions prevail, that is, all fugacities are less than the liquid or subcooled liquid vapor pressure. [Pg.50]

The lack of significant vapor pressure prevents the purification of ionic liquids by distillation. The counterpoint to this is that any volatile impurity can, in principle, be separated from an ionic liquid by distillation. In general, however, it is better to remove as many impurities as possible from the starting materials, and where possible to use synthetic methods that either generate as few side products as possible, or allow their easy separation from the final ionic liquid product. This section first describes the methods employed to purify starting materials, and then moves on to methods used to remove specific impurities from the different classes of ionic liquids. [Pg.17]

The simplest method to measure gas solubilities is what we will call the stoichiometric technique. It can be done either at constant pressure or with a constant volume of gas. For the constant pressure technique, a given mass of IL is brought into contact with the gas at a fixed pressure. The liquid is stirred vigorously to enhance mass transfer and to allow approach to equilibrium. The total volume of gas delivered to the system (minus the vapor space) is used to determine the solubility. If the experiments are performed at pressures sufficiently high that the ideal gas law does not apply, then accurate equations of state can be employed to convert the volume of gas into moles. For the constant volume technique, a loiown volume of gas is brought into contact with the stirred ionic liquid sample. Once equilibrium is reached, the pressure is noted, and the solubility is determined as before. The effect of temperature (and thus enthalpies and entropies) can be determined by repetition of the experiment at multiple temperatures. [Pg.84]

Probably the most prominent property of an ionic liquid is its lack of vapor pressure. Transition metal catalysis in ionic liquids can particularly benefit from this on economic, environmental, and safety grounds. [Pg.217]

Notwithstanding their very low vapor pressure, their good thermal stability (for thermal decomposition temperatures of several ionic liquids, see [11, 12]) and their wide operating range, the key property of ionic liquids is the potential to tune their physical and chemical properties by variation of the nature of the anions and cations. An illustration of their versatility is given by their exceptional solubility characteristics, which make them good candidates for multiphasic reactions (see Section 5.3.4). Their miscibility with water, for example, depends not only on the hydrophobicity of the cation, but also on the nature of the anion and on the temperature. [Pg.261]

Ionic liquids hold as much promise for inorganic and organometallic synthesis as they do for organic synthesis. Their lade of vapor pressure has already been exploited [13], as have their interesting solubility properties. The field can only be expected to accelerate from its slow beginnings. [Pg.293]

Room temperature ionic liquids arc currently receiving considerable attention as environmentally friendly alternatives to conventional organic solvents in a variety of contexts.144 The ionic liquids have this reputation because of their high stability, inertness and, most importantly, extremely low vapor pressures. Because they are ionic and non-conducting they also possess other unique properties that can influence the yield and outcome of organic transformations. Polymerization in ionic liquids has been reviewed by Kubisa.145 Commonly used ionic liquids are tetra-alkylammonium, tetra-alkylphosphonium, 3-alkyl-l-methylimidazolium (16) or alkyl pyridinium salts (17). Counter-ions are typically PF6 and BF4 though many others are known. [Pg.432]

Wc have seen that molecular substances tend to have low melting points, while network, ionic, and metallic substances tend to have high melting points. Therefore, with a few exceptions, such as mercury, a substance that is liquid at room temperature is likely to he a molecular substance. Liquid solvents are heavily used in industry to extract substances from natural products and ro promote the synthesis of desired compounds. Because many of these solvents have high vapor pressures and so give off hazardous fumes, luinids that have low vapor pressures hut dissolve... [Pg.17]

A new class of solvents called ionic liquids has been developed to meet this need. A typical ionic liquid has a relatively small anion, such as BF4, and a relatively large, organic cation, such as l-butyl-3-methylimidazolium (16). Because the cation has a large nonpolar region and is often asymmetrical, the compound does not crystallize easily and so is liquid at room temperature. However, the attractions between the ions reduces the vapor pressure to about the same as that of an ionic solid, thereby reducing air pollution. Because different cations and anions can be used, solvents can be designed for specific uses. For example, one formulation can dissolve the rubber in old tires so that it can be recycled. Other solvents can be used to extract radioactive waste from groundwater. [Pg.327]

Ionic liquids are compounds in which one of the ions is a large, organic ion that prevents the liquid from crystallizing at ordinary temperatures. The low vapor pressures of ionic liquids make them desirable solvents that reduce pollution. [Pg.327]

Ionic liquids, which can be defined as salts that do not crystallize at room temperature [46], have been intensively investigated as environmentally friendly solvents because they have no vapor pressure and, in principle, can be reused more efficiently than conventional solvents. Ionic liquids have found wide application in organometallic catalysis as they facilitate the separation between the charged catalysts and the products. [Pg.14]

Recently, room temperature ionic liquids (RT-ILs) have attracted much attention for their excellent properties, e.g., wide temperature range of liquid phase, ultra-low vapor pressure, chemical stability, potential as green solvents, and high heat capacities [64,65]. These properties make them good candidates for the use in many fields, such as thermal storage [66], electrochemical applications, homogeneous catalysis [67], dye sensitized solar cells [68], and lubricants [69,70]. [Pg.54]

However, investigations up to now have mainly concentrated themselves on ambient environments even though it is known that ionic liquids have a very low vapor pressure, making them suitable for vacuum applications such as in space mechanisms, the disk drive industry, and microelec-tromechanical systems (MEMS). Due to the ultra-low vapor pressure of most ionic liquids, they have been expected to be good lubricants in vacuum. Further experimental works are required to evaluate lubrication behavior of ionic liquids under ultra-high vacuum conditions and in inert atmospheres. [Pg.55]

Recent developments for reactive C02 sorbents include sterically hindered amines such as 2-amino-2-methyl-l-propanol (AMP) and 1,8-p-methanediamine (MDA) and 2-piperidine ethanol (PE), which are claimed to have good reversible C02 capacity (Veawab et al., 1998) and low-temperature molten salts called ionic liquids (Bates et al., 2002). Ionic liquids are attractive due to their negligible vapor pressure up to their decomposition at... [Pg.295]

We have also demonstrated that well-behaved quantized charging of gold MPCs is possible in air- and water-stable room-temperature ionic liquids, such as 1-hexyl-3-methylimidazolium tris(penta-fluoroethyl)-trifluorophosphate (HMImEEP), Fig. 30c, d [334, 335]. As ionic liquids have very attractive features, including nearzero vapor pressure, considerable thermal stability, and an electrochemical stability window that often exceeds 4 V, this demonstration is particularly significant from a technological point of view. [Pg.177]

Water h2o Clear, colorless liquid with low vapor pressure, highly polar Dissolving polar and ionic compounds... [Pg.28]

A wide variety of data for mean ionic activity coefficients, osmotic coefficients, vapor pressure depression, and vapor-liquid equilibrium of binary and ternary electrolyte systems have been correlated successfully by the local composition model. Some results are shown in Table 1 to Table 10 and Figure 3 to Figure 7. In each case, the chemical equilibrium between the species has been ignored. That is, complete dissociation of strong electrolytes has been assumed. This assumption is not required by the local composition model but has been made here in order to simplify the systems treated. [Pg.75]

Both SILC and SILP offer the advantage over SAPC of using ionic liquids instead of water. The low vapor pressure ensures that the supported phase remains liquid under the reaction conditions, and that it is retained during continuous flow operation. [Pg.142]


See other pages where Ionic liquids vapor pressure is mentioned: [Pg.191]    [Pg.4]    [Pg.6]    [Pg.3]    [Pg.43]    [Pg.44]    [Pg.86]    [Pg.148]    [Pg.264]    [Pg.303]    [Pg.466]    [Pg.116]    [Pg.195]    [Pg.107]    [Pg.865]    [Pg.84]    [Pg.68]    [Pg.584]    [Pg.69]    [Pg.212]    [Pg.287]    [Pg.1391]    [Pg.488]    [Pg.111]    [Pg.327]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Ionic pressure

Ionic vapor pressure

Liquids vapor pressure

© 2024 chempedia.info