Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interferometer components

The schematic interferometer diagrams given do not show most of the optics, such as beam collimators and focusing mirrors. Mirrors in an FTIR are generally made of metal. The mirrors are polished on the front surface and may be gold coated to improve corrosion resistance. Commercial FTIRs use a variety of flat and curved mirrors to move light within the spectrometer, to focus the source onto the beam splitter, and to focus light from the sample onto the detector. [Pg.263]

Ideally, the beam splitter should split all wavelengths equally, with 50% of the beam being transmitted and 50% reflected. This would result in equal intensity at both the fixed and moving mirrors. Real beam splitters deviate from ideality. [Pg.263]


Each sample has its own independent interferometer associated with it. A 5 mW red HeNe laser [Spectra Physics] is used as the energy source for the four interferometers that are in the system. The incident beam is split twice in order to provide incident beams to each of the independent interferometers. Each interferometer consists of a 50/50 beamsplitter, four mirrors [including two mirrors at 45°under the reactor to direct the beam into the reactor], and a beam expander in addition to the sample and reference mirrors located in the reactor. All of the optics have a flatness specification of X/10. The mirrors which make up the interferometer components outside of the reactor are enhanced aluminum. The 45° mirrors have adjustment screws so that the sample and reference beams can be aligned from outside the system once a run is started. [Pg.309]

To simplify FECO evaluation, it is conmion practice to experimentally filter out one of the components by the use of a linear polarizer after the interferometer. Mica bireftingence can, however, be useftil to study thin films of birefringent molecules [49] between the surfaces. Rabinowitz [53] has presented an eigenvalue analysis of birefringence in the multiple beam interferometer. [Pg.1735]

On metals in particular, the dependence of the radiation absorption by surface species on the orientation of the electrical vector can be fiilly exploited by using one of the several polarization techniques developed over the past few decades [27, 28, 29 and 30], The idea behind all those approaches is to acquire the p-to-s polarized light intensity ratio during each single IR interferometer scan since the adsorbate only absorbs the p-polarized component, that spectral ratio provides absorbance infonnation for the surface species exclusively. Polarization-modulation mediods provide the added advantage of being able to discriminate between the signals due to adsorbates and those from gas or liquid molecules. Thanks to this, RAIRS data on species chemisorbed on metals have been successfidly acquired in situ under catalytic conditions [31], and even in electrochemical cells [32]. [Pg.1782]

The dispersing element to be described in Section 3.3 splits up the radiation into its component wavelengths and is likely to be a prism, diffraction grating or interferometer, but microwave and millimetre wave spectroscopy do not require such an element. [Pg.43]

The most important component of an FTIR spectrometer is an interferometer based on the original design by Michelson in 1891, as shown in Figure 3.11. [Pg.55]

Fig. 1. Representative device configurations exploiting electrooptic second-order nonlinear optical materials are shown. Schematic representations are given for (a) a Mach-Zehnder interferometer, (b) a birefringent modulator, and (c) a directional coupler. In (b) the optical input to the birefringent modulator is polarized at 45 degrees and excites both transverse electric (TE) and transverse magnetic (TM) modes. The appHed voltage modulates the output polarization. Intensity modulation is achieved using polarizing components at the output. Fig. 1. Representative device configurations exploiting electrooptic second-order nonlinear optical materials are shown. Schematic representations are given for (a) a Mach-Zehnder interferometer, (b) a birefringent modulator, and (c) a directional coupler. In (b) the optical input to the birefringent modulator is polarized at 45 degrees and excites both transverse electric (TE) and transverse magnetic (TM) modes. The appHed voltage modulates the output polarization. Intensity modulation is achieved using polarizing components at the output.
Experimentally, this technique is very similar to the TDI technique described above. A laser beam is incident normally on a diffraction grating or a preferentially scratched mirror deposited on the surface to obtain the normally reflected beam and the diffracted beams as described above. Instead of recombining the two beams that are located symmetrically from the normally reflected beam, each individual beam at an angle d is monitored by a VISAR. Fringes Fg produced in the interferometers are proportional to a linear combination of both the longitudinal U(t) and shear components F(t) of the free surface velocity (Chhabildas et al., 1979), and are given by... [Pg.61]

In an FTIR spectrometer, a source (usually a resistively heated ceramic rod) emits infrared radiation that is focused onto an interferometer whose main components consist of a beamsplitter, fixed mirror, movable mirror, and detector. The beamsplitter divides the beam into two beams. One beam is reflected off the beamsplitter toward the fixed mirror and is then reflected back through the beamsplitter to the detector. The other beam is transmitted through the beamsplitter toward the movable mirror and is then reflected off of the beamsplitter and to the detector [1],... [Pg.244]

At 10Hz in a typical Nd-YAG laser 1000Hz/- /Hz, and the typical finesse asymmetry is of the order of one percent. In order to detect a gw signal the laser frequency noise has to be lowered by six orders of magnitudes (compared to the noise of a free running laser), and the two arms made as identical as possible. In order to achieve this complex frequency stabilization methods are employed in all interferometric detectors, and in order to insure the perfect symmetry of the interferometer, all pairs of Virgo optical components are coated during the same run (both Fabry-Perot input mirrors then both end mirrors are coated simultaneously). [Pg.322]

Fig. 2.6. Schematic illustration of the experimental setup for pump-probe anisotropic reflectivity measurements with fast scan method. PBS denotes polarizing beam splitter, PD1 and PD2, a pair of matched photodiodes to detect p- and s-polarized components of the reflected probe beam, PD3 another photodiode to detect the interference pattern of He-Ne laser in a Michelson interferometer to calibrate the scanning of the pump path length... Fig. 2.6. Schematic illustration of the experimental setup for pump-probe anisotropic reflectivity measurements with fast scan method. PBS denotes polarizing beam splitter, PD1 and PD2, a pair of matched photodiodes to detect p- and s-polarized components of the reflected probe beam, PD3 another photodiode to detect the interference pattern of He-Ne laser in a Michelson interferometer to calibrate the scanning of the pump path length...
Both the GC-MS and GC-IR instruments obviously require that the column effluent be fed into the spectrometer detection path. For the IR instrument, this means that the IR cell, often referred to as a light pipe, be situated just outside the interferometer (Chapter 8) in the path of the light, of course, but it must also have a connection to the GC column and an exit tube where the sample may possibly be collected. The infrared detector is nondestructive. With the mass spectrometer detector, we have the problem of the low pressure of the mass spectrometry unit coupled with the ambient pressure of the GC column outlet. A special method is used to eliminate carrier gas while retaining sufficient amounts of the mixture components so that they are measurable with the mass spectrometer. [Pg.352]

Using a high-resolution spectrograph and a Fabry-Perrot interferometer, Gunther eta/. 727) resolved a number of equidistant components with a mean separation of 0.04 cm" in the stimulated Raman spectrum of CSj, which can be attributed to resonant modes in single medium-scale filaments of self-trapped radiation within the liquid. [Pg.47]

Because of the relatively large dispersion from the electrons compared with the almost constant refractivity of the neutrals and the negligible contribution of the ions, it is possible, with simultaneous measurements at two different wavelength, to determine independent values of the density of electrons and of the nonelectronic components in the plasma 274). Alcock and Ramsden 275) used the light from a giant-pulse ruby laser and its second harmonic generated in an ADP-crystal (ammonium dihydrogen phosphate) to probe a pulsed plasma and its time-dependent density in a Mach-Zehnder interferometer. [Pg.53]

An FTIR instrument The three critical components (excluding the sample) are the source, the detector and the interferometer. In terms of enabling technology it is the interferometer that is critical to the measurement. [Pg.165]

Maintenance issues are important to address, and the requirement for high cost replacement parts must be kept to a minimum, unless the frequency of replacement is once every three to four years. Today, process FUR analyzers are not necessarily a problem, as long as components are simple to replace. The normal replacement items are the somce and laser, and the replacement of these must be kept simple. If an interferometer alignment is required, then this must be automated via an integrated mechanized auto-align procedme. [Pg.188]

A two-component phase Doppler interferometer (PDI) was used to determine droplet size, velocity, and number density in spray flames. The data rates were determined according to the procedure discussed in [5]. Statistical properties of the spray at every measurement point were determined from 10,000 validated samples. In regions of the spray where the droplet number density was too small, a sampling time of several minutes was used to determine the spray statistical characteristics. Results were repeatable to within a 5% margin for mean droplet size and velocity. Measurements were carried out with the PDI from the spray centerline to the edge of the spray, in increments of 1.27 mm at an axial position (z) of 10 mm downstream from the nozzle, and increments of 2.54 mm at z = 15 mm, 20, 25, 30, 35, 40, 50, and 60 mm using steam, normal-temperature air, and preheated air as the atomization gas. [Pg.256]


See other pages where Interferometer components is mentioned: [Pg.236]    [Pg.263]    [Pg.236]    [Pg.263]    [Pg.1734]    [Pg.378]    [Pg.61]    [Pg.417]    [Pg.1303]    [Pg.19]    [Pg.283]    [Pg.324]    [Pg.364]    [Pg.31]    [Pg.439]    [Pg.312]    [Pg.44]    [Pg.143]    [Pg.93]    [Pg.162]    [Pg.418]    [Pg.436]    [Pg.219]    [Pg.35]    [Pg.333]    [Pg.128]    [Pg.172]    [Pg.178]    [Pg.20]    [Pg.266]    [Pg.162]    [Pg.44]    [Pg.64]    [Pg.100]    [Pg.720]   
See also in sourсe #XX -- [ Pg.3408 ]




SEARCH



Fourier transform infrared interferometer component

Interferometer

© 2024 chempedia.info