Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Interconnects oxidation

This entry is organized as follows In section Historical Aspects of Reliability, Durability and Cost Issues, historical aspects are first described to provide essential points of SOFC stack/system development. The technological features of the first-generation cells, namely, sealless tubular cells, will be described in comparison with the second- and the third-generation cells in critical technological issues these are materials selection of interconnect (oxide or metal), sealing scheme, redox issues of nickel cermets, metal support cells, trade-off relation between reliability and performance, and materials chemistry associated with lowering operation temperature. [Pg.611]

External supporting Interconnect supported Thin cell components for lower operating temperature Stronger structures from metallic interconnects Interconnect oxidation Flowfield design limitation due to cell support requirement... [Pg.205]

An electrochemical vapor deposition (EVD) technique has been developed that produces thin layers of refractory oxides that are suitable for the electrolyte and cell interconnection in SOFCs (9). In this technique, the appropriate metal chloride (MeCl ) vapor is introduced on one side of a porous support tube, and H2/H2O gas is introduced on the other side. The gas environments on both sides of the support tube act to form two galvanic couples, ie. [Pg.581]

The result is the formation of a dense and uniform metal oxide layer in which the deposition rate is controlled by the diffusion rate of ionic species and the concentration of electronic charge carriers. This procedure is used to fabricate the thin layer of soHd electrolyte (yttria-stabilized 2irconia) and the interconnection (Mg-doped lanthanum chromite). [Pg.581]

The blue-black Hon oxide formed in this process fills some of the interconnecting porosity and much of the surface. Hence the density is increased, resulting in higher compressive strength. Furthermore, the oxide coating increases hardness (qv) and wear resistance. [Pg.187]

Plasma etching is widely used in semiconductor device manufacturing to etch patterns in thin layers of polycrystaUine siUcon often used for metal oxide semiconductor (MOS) device gates and interconnects (see Plasma TECHNOLOGY). [Pg.526]

Directed Oxidation of a Molten Metal. Directed oxidation of a molten metal or the Lanxide process (45,68,91) involves the reaction of a molten metal with a gaseous oxidant, eg, A1 with O2 in air, to form a porous three-dimensional oxide that grows outward from the metal/ceramic surface. The process proceeds via capillary action as the molten metal wicks into open pore channels in the oxide scale growth. Reinforced ceramic matrix composites can be formed by positioning inert filler materials, eg, fibers, whiskers, and/or particulates, in the path of the oxide scale growth. The resultant composite is comprised of both interconnected metal and ceramic. Typically 5—30 vol % metal remains after processing. The composite product maintains many of the desirable properties of a ceramic however, the presence of the metal serves to increase the fracture toughness of the composite. [Pg.313]

Microstructural examinations of the external surface revealed an interconnecting network of graphite flakes embedded in a matrix of iron oxide. [Pg.381]

The sulphide usually forms an interconnected network of particles within a matrix of oxide and thus provides paths for rapid diffusion of nickel to the interface with the gas. At high temperatures, when the liquid Ni-S phase is stable, a duplex scale forms with an inner region of sulphide and an outer porous NiO layer. The temperature dependence of the reaction is complex and is a function of gas pressure as indicated in Fig. 7.40 . A strong dependence on gas pressure is observed and, at the higher partial pressures, a maximum in the rate occurs at about 600°C corresponding to the point at which NiS04 becomes unstable. Further increases in temperature lead to the exclusive formation of NiO and a large decrease in the rate of the reaction, due to the fact that NijSj becomes unstable above about 806°C. [Pg.1058]

In general, greatly reduced rates of attack are observed for impure or dilute nickel alloys compared with pure nickel when exposed to SO2 + O2 atmospheres. Haflan et al. have attributed this to the segregation of impurities at the sulphide/oxide interface causing breakup of the sulphide network. For example in the case of silicon additions, it has been shown that silicates form and it has been proposed that these alter the wetting characteristics of the sulphide and prevent the establishment of an interconnected sulphide network. [Pg.1059]

Metal is then deposited into the opened vias (openings) in the oxide layer and over its surface. During the subsequent photolithography process, it is patterned to form the desired electrical interconnections. These two steps are repeated for each succeeding level to produce additional levels of interconnections. Finally, a protective overcoat of oxide/nitride is applied (passivation), and vias are opened so that the wires eonnectlng the IC chip to its carrier package can be bonded to output pads. [Pg.333]

Enteric nerves control intestinal smooth muscle action and are connected to the brain by the autonomic nervous system. IBS is thought to result from dysregulation of this brain-gut axis. The enteric nervous system is composed of two gan-glionated plexuses that control gut innervation the submucous plexus (Meissner s plexus) and the myenteric plexus (Auerbach s plexus). The enteric nervous system and the central nervous system (CNS) are interconnected and interdependent. A number of neurochemicals mediate their function, including serotonin (5-hydroxytryptamine or 5-HT), acetylcholine, substance P, and nitric oxide, among others. [Pg.316]

The electrochemical intercalation/insertion is not a special property of graphite. It is apparent also with many other host/guest pairs, provided that the host lattice is a thermodynamically or kinetically stable system of interconnected vacant lattice sites for transport and location of guest species. Particularly useful are host lattices of inorganic oxides and sulphides with layer or chain-type structures. Figure 5.30 presents an example of the cathodic insertion of Li+ into the TiS2 host lattice, which is practically important in lithium batteries. [Pg.329]


See other pages where Interconnects oxidation is mentioned: [Pg.266]    [Pg.44]    [Pg.2]    [Pg.51]    [Pg.51]    [Pg.183]    [Pg.422]    [Pg.132]    [Pg.266]    [Pg.44]    [Pg.2]    [Pg.51]    [Pg.51]    [Pg.183]    [Pg.422]    [Pg.132]    [Pg.203]    [Pg.257]    [Pg.581]    [Pg.345]    [Pg.348]    [Pg.548]    [Pg.196]    [Pg.472]    [Pg.355]    [Pg.470]    [Pg.203]    [Pg.316]    [Pg.286]    [Pg.986]    [Pg.423]    [Pg.80]    [Pg.251]    [Pg.202]    [Pg.247]    [Pg.261]    [Pg.597]    [Pg.314]    [Pg.324]    [Pg.325]    [Pg.52]    [Pg.33]    [Pg.318]    [Pg.541]    [Pg.330]   
See also in sourсe #XX -- [ Pg.50 , Pg.75 ]




SEARCH



Interconnect

Interconnected

Interconnections

Interconnects

Interconnects oxide ceramic

Oxidation interconnect

Oxidation interconnect

Oxide interconnection

Oxide interconnection

Solid oxide fuel cell interconnects

Solid oxide fuel cells cell interconnection

Solid oxide fuel cells interconnection

© 2024 chempedia.info