Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Intercalation nanoclays

The results suggest that the thermal stability improves with higher loading till 6 phr of nanoclay and this improvement is attributed to the barrier effect of the exfoliated and the intercalated nanoclay particles. [Pg.36]

The decrease in weight gain for the nanophased composites can be attributed to the hybrid exfoliated and intercalated nanoclay platelets in polymer. Nanoclay platelets when exfoliated/dispersed well in the matrix provide the barrier to gas/liquid in a tortuous manner [12]. This can be attributed to the gas/moisture and radiation barrier properties of montmorillonite nanoclay, which is consistent with results reported by Woo et al. [35]. [Pg.792]

The comprehensive flame retardation of polymer-clay nanocomposite materials was reported by Dr. Jeff Gilman and others at NIST [7]. They disclosed that both delaminated and intercalated nanoclays improve the flammability properties of polymer-layered silicate (clay) nanocomposites. In the study of the flame retardant effect of the nanodispersed clays, XRD and TEM analysis identified a nanoreinforced protective silicate/carbon-like high-performance char from the combustion residue that provided a physical mechanism of flammability control. The report also disclosed that The nanocomposite structure of the char appears to enhance the performance of the char layer. This char may act as an insulation and mass transport barrier showing the escape of the volatile products generated as the polymer decomposes. Cone calorimetry was used to study the flame retardation. The HRRs (heat release rates) of thermoplastic and thermoset polymer-layered silicate nanocomposites are reduced by 40% to 60% in delaminated or intercalated nanocomposites containing a silicate mass fraction of only 2% to 6%. On the basis of their expertise and experience in plastic flammability, they concluded that polymer-clay nanocomposites are very promising new flame-retarding polymers. In addition, they predict that the addition... [Pg.166]

Deeiiadayalan E, Vidhate S and Lele A (2006) Nanocoinposites of polypropylene impact copolymer and organoclays Role of compatibilizers, Polym Intern 55 1270-1276. Deshmane C, Yuan Q and Misra R D K (2007) High strength-toughness combination of melt intercalated nanoclay-reinforced thermoplastic olefins, Mater Sci Eng A460-461.-277-287. [Pg.415]

ENGAGE is an ethylene-octene copolymer. Ray and Bhowmick [70] have prepared nanocomposites based on this copolymer. In this study, the nanoclay was modified in situ by polymerization of acrylate monomer inside the gallery gap of nanoclay. ENGAGE was then intercalated inside the increased gallery gap of the modified nanoclay. The nanocomposites prepared by this method have improved mechanical properties compared to that of the conventional counterparts. Preparation and properties of organically modified nanoclay and its nanocomposites with ethylene-octene copolymer were reported by Maiti et al. [71]. Excellent improvement in mechanical properties and storage modulus was noticed by the workers. The results were explained with the help of morphology, dispersion of the nanofiller, and its interaction with the mbber. [Pg.36]

This is a highly polar polymer and crystalline due to the presence of amide linkages. To achieve effective intercalation and exfoliation, the nanoclay has to be modified with some functional polar group. Most commonly, amino acid treatment is done for the nanoclays. Nanocomposites have been prepared using in situ polymerization [85] and melt-intercalation methods [113-117]. Crystallization behavior [118-122], mechanical [123,124], thermal, and barrier properties, and kinetic study [125,126] have been carried out. Nylon-based nanocomposites are now being produced commercially. [Pg.46]

Choudhury et al. [36] in their work on hydrogenated nitrile butadiene rubber (HNBR)-nanoclay systems showed the thermodynamic aspects of nanocomposite formation using the mean-field-lattice-based description of polymer melt intercalation, which was first proposed by Vaia and Giannelis [37]. Briefly, the free... [Pg.8]

In subsequent discussion, we will demonstrate the use and interpretation of some of these techniques. Figure 2a shows typical XRD traces of nanocomposite systems of styrene butadiene rubber (SBR) containing unmodified and modified nanoclay, describing an exfoliated and intercalated nanocomposite [5]. photographs of these systems are also given in the same figure (Fig. 2b, c). In the present case, the information obtained from both the techniques is complimentary. [Pg.10]

The incorporation of unmodified and organically modified montmorillonite nanoclays (namely 15A and 30B) in chlorinated polyethylene (CPE) by the solution intercalation method and their influence on mechanical properties of the nanocomposites have been studied by Kar et al. [137]. The o-MMT-embedded nanocomposites show enhanced tensile strength and Young s modulus in comparison to the nanocomposites containing the unmodified nanoclay. They have shown from and XRD analyses that organically modified clay shows better dispersion in the CPE matrix. This has been further substantiated from FTIR analysis, which proves an interaction between the CPE matrix and the clay intercalates. [Pg.34]

In the literature, there are several reports that examine the role of conventional fillers like carbon black on the autohesive tack (uncured adhesion between a similar pair of elastomers) [225]. It has been shown that the incorporation of carbon black at very high concentration (>30 phr) can increase the autohesive tack of natural and butyl rubber [225]. Very recently, for the first time, Kumar et al. [164] reported the effect of NA nanoclay (at relatively very low concentration) on the autohesive tack of BIMS rubber by a 180° peel test. XRD and AFM show intercalated morphology of nanoclay in the BIMS rubber matrix. However, the autohesive tack strength dramatically increases with nanoclay concentration up to 8 phr, beyond which it apparently reaches a plateau at 16 phr of nanoclay concentration (see Fig. 36). For example, the tack strength of 16 phr of nanoclay-loaded sample is nearly 158% higher than the tack strength of neat BIMS rubber. The force versus, distance curves from the peel tests for selected samples are shown in Fig. 37. [Pg.60]

It is a common phenomenon that the intercalated-exfoliated clay coexists in the bulk and in the interface of a blend. Previous studies of polymer blend-clay systems usually show that the clay resides either at the interface [81] or in the bulk [82]. The simultaneous existence of clay layers in the interface and bulk allows two functions to be attributed to the nanoclay particles one as a compatibilizer because the clays are being accumulated at the interface, and the other as a nanofiller that can reinforce the rubber polymer and subsequently improve the mechanical properties of the compound. The firm existence of the exfoliated clay layers and an interconnected chain-like structure at the interface of CR and EPDM (as evident from Fig. 42a, b) surely affects the interfacial energy between CR and EPDM, and these arrangements seem to enhance the compatibility between the two rubbers. [Pg.140]

Nano-clay particles, 476 Exfoliated, 476 Intercalated, 476 Nanoclay, 190... [Pg.688]

TPV nanocomposites of LLDPE/reclaimed rubber with nanoclay and 1 wt.% MA-grafted PE and curative were prepared using a Brabender internal mixer at 170°C (Razmjooei et al., 2012). Contents of the reclaimed rubber, nanoclay, and compatibilizer were varied up to 30, 7, and 21 wt.%, respectively. The blends without the compatibilizer were also prepared. Morphological, thermal, and mechanical properties of the nanoclay-reinforced TPV nanocomposites indicated intercalation and partial exfoliation by the high-shear stress during mixing with the reclaimed rubber. Vulcanization of rubber phase led to an increase of viscosity. The size of rubber particles in TPV was reduced with the addition of nanoclay and compatibilizer. [Pg.736]


See other pages where Intercalation nanoclays is mentioned: [Pg.221]    [Pg.538]    [Pg.22]    [Pg.66]    [Pg.136]    [Pg.209]    [Pg.375]    [Pg.766]    [Pg.221]    [Pg.538]    [Pg.22]    [Pg.66]    [Pg.136]    [Pg.209]    [Pg.375]    [Pg.766]    [Pg.26]    [Pg.38]    [Pg.430]    [Pg.13]    [Pg.17]    [Pg.21]    [Pg.23]    [Pg.33]    [Pg.39]    [Pg.41]    [Pg.45]    [Pg.48]    [Pg.54]    [Pg.62]    [Pg.114]    [Pg.130]    [Pg.136]    [Pg.140]    [Pg.164]    [Pg.308]    [Pg.746]    [Pg.777]    [Pg.96]    [Pg.89]    [Pg.346]    [Pg.37]    [Pg.4]    [Pg.340]    [Pg.686]    [Pg.308]   
See also in sourсe #XX -- [ Pg.189 , Pg.190 , Pg.191 , Pg.192 , Pg.193 ]




SEARCH



Nanoclays

Nanoclays exfoliation/intercalation

© 2024 chempedia.info