Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectrum determining

The red-violet crystalline compound, which decomposes at 195°, is fairly stable to air it is soluble in benzene, toluene, and THF (tetrahydrofuran). Its solutions slowly react with air. Its infrared spectrum, determined in Nujol mull, shows a broad, weak absorption band at 1955 cm-1, assignable to the Fe—H stretch. When the complex is treated with solid iodine at 60°, about 0.5 mol of hydrogen is evolved per mole of complex. On treatment with iodine in benzene solution at room temperature, only 20-40% of the stoichiometric amount of hydrogen is evolved. [Pg.70]

A solution of caffeine in chloroform is provided for analysis, with the concentration of caffeine in the solution being required. Caffeine in chloroform shows a distinct carbonyl band at 1656 cm in the infrared spectrum (recorded by using a 0.1 mm NaCI cell). The infrared information provided by standard solutions of caffeine in chloroform is listed below in Table 3.2. Given that the unknown sample produces an absorbance of 0.166 at 1656 cm" in its infrared spectrum, determine the concentration of this caffeine sample. Assume that there is no interference from other components in the sample. [Pg.61]

Using your infrared spectrum, determine the structure of the oxidation product (see the structures shown in the introduction to this experiment). Is the oxidation selective Did the hypochlorite oxidize both alcohol functional groups ... [Pg.573]

The vibrational motions of the chemically bound constituents of matter have fre-quencies in the infrared regime. The oscillations induced by certain vibrational modes provide a means for matter to couple with an impinging beam of infrared electromagnetic radiation and to exchange energy with it when the frequencies are in resonance. In the infrared experiment, the intensity of a beam of infrared radiation is measured before (Iq) and after (7) it interacts with the sample as a function of light frequency, w[. A plot of I/Iq versus frequency is the infrared spectrum. The identities, surrounding environments, and concentrations of the chemical bonds that are present can be determined. [Pg.32]

The goal of the basic infrared experiment is to determine changes in the intensity of a beam of infrared radiation as a function of wavelength or frequency (2.5-50 im or 4000—200 cm respectively) after it interacts with the sample. The centerpiece of most equipment configurations is the infrared spectrophotometer. Its function is to disperse the light from a broadband infrared source and to measure its intensity at each frequency. The ratio of the intensity before and after the light interacts with the sample is determined. The plot of this ratio versus frequency is the infrared spectrum. [Pg.417]

Define Iq to be the intensity of the light incident upon the sample and I to be the intensity of the beam after it has interacted with the sample. The goal of the basic inftared experiment is to determine the intensity ratio I/Iq as a function of the frequency of the light (w). A plot of this ratio versus the frequency is the infrared spectrum. The inftared spectrum is commonly plotted in one of three formats as transmittance, reflectance, or absorbance. If one is measuring the fraction of light transmitted through the sample, this ratio is defined as... [Pg.419]

Fingerprint region (Section 13.20) The region 1400-625 cm of an infrared spectrum. This region is less characteristic of functional groups than others, but varies so much from one molecule to another that it can be used to determine whether two substances are identical or not. [Pg.1283]

Mason has determined the infrared spectrum of pyrido[3,2-d]-pyrimidin-4(3ff)-one (149, N in position 5) in chloroform solution and as a KBr disc and has suggested that the low frequency of th e NH band (3389 cm ) and high frequency of the C=0 band (1745 cm i) in the solution spectra are indicative of a quasi o-quinonoid form. The infrared spectra of the four pyridopyrimidin-4(377)-ones (149), the four 2,4(ljff,3//)-diones (150), and a number of substituted derivatives, have been determined, as Nujol mulls, in these laboratories. ... [Pg.185]

In 1882 Baeyer and Oekonomides advanced formula 72 (R = H) for isatin on chemical grounds, but shortly thereafter the dioxo structure 73 (R H) was proposed since the ultraviolet spectrum of isatin resembled that of the N—Me derivative (73, R Me) and not that of the O—Me derivative (72, R = Me). " It was later shown, despite a conflicting report, that the ultraviolet spectrum of isatin is very similar to the spectra of both the O— and N—Me deriva-tives - the early investigators had failed to take into consideration the facile decomposition of the O—Me derivative. Although isolation of the separate tautomers of isatin has been reported, - these claims were disproved. A first attempt to determine the position of the mobile hydrogen atom using X-ray crystallographic techniques was inconclusive, but later X-ray work," dipole moment data, and especially the infrared spectrum demonstrated the correctness of the... [Pg.16]

B) Acylation of 6-Aminopenicillanic Acid To a solution of the aryl halocarbonyl ketene (0.1 mol) in methylene chloride (sufficient to provide a clear solution and generally from about 5 to 10 ml per gram of ketene) there is added the proper alcohol RjOH (0.1 mol), in this case 5-indanyl alcohol. The reaction mixture is maintained under an atmosphere of nitrogen and stirred for a period of from 20 minutes to 3 hours, care being taken to exclude moisture. The temperature may range from about -70° to about -20°C. The infrared spectrum of the mixture is then taken to determine and confirm the presence of the ketene ester. A solution of 6-aminopenicillanic acid-triethylamine salt (0.1 mol) in methylene chloride (50 ml) is added and the mixture stirred at -70° to -20°C for 10 minutes. The cooling bath is then removed and the reaction mixture stirred continuously and allowed to warm to room temperature. [Pg.237]

Notice that our attempt to determine the structural formula of ethanol has involved the consideration of a variety of types of evidence. Others could be listed as well—for example, the infrared spectrum of the liquid and the X-ray diffraction pattern of the solid add strong support for structure 1. No one fact by itself gives... [Pg.329]

Hence we may conclude for a vibration to be active in the infrared spectrum it must have the same symmetry properties (i.e. transform in the same way) as, at least, one of x, y, or z. The transformation properties of these simple displacement vectors are easily determined and are usually given in character tables. Therefore, knowing the form of a normal vibration we may determine its symmetry by consulting the character table and then its infrared activity. [Pg.303]

The molecular mass determined osmometrically corresponds to the formula S5O. The SO stretching vibration was observed in the infrared spectrum at 1119 cm (at -65 °G) indicating an exocyclic sulfoxide group similar to the one in SsO (see below). At -50 °G the solution of S5O may be kept for several days without decomposition which usually results in a Tyndall effect caused by a colloidal polymeric sulfuroxide which is the expected decomposition product. At 25 °G some decomposition already occurs within... [Pg.213]

Following the isolation of a desired product. The isolation of a desired substance by a purification procedure such as distillation or chromatography may be followed by a determination of the infrared spectrum. It is not essential to know what the compound is in this... [Pg.1142]

A second reason why AI is of value to scientists is that it offers powerful tools to cope with complexity. In favorable circumstances, the solutions to problems can be expressed by rules or by a well-defined, possibly trivial, model. If we want to know whether a compound contains a carbonyl group, we could record its infrared spectrum and check for a peak near 1760 cm1. The spectrum, paired with the rule that ketones generally show an absorption in this region, is all that we need. But other correlations are more difficult to express by rules or parametrically. What makes a good wine We may (or may not) be able to recognize a superior wine by its taste, but would have considerable difficulty in determining whether a wine is good, or even if it is palatable, if all we had to go on was a list of the chemicals of which it is comprised. [Pg.5]

It must be acknowledged, however, that the determination of the number of the different surface species which are formed during an adsorption process is often more difficult by means of calorimetry than by spectroscopic techniques. This may be phrased differently by saying that the resolution of spectra is usually better than the resolution of thermograms. Progress in data correction and analysis should probably improve the calorimetric results in that respect. The complex interactions with surface cations, anions, and defects which occur when carbon monoxide contacts nickel oxide at room temperature are thus revealed by the modifications of the infrared spectrum of the sample (75) but not by the differential heats of the CO-adsorption (76). Any modification of the nickel-oxide surface which alters its defect structure produces, however, a change of its energy spectrum with respect to carbon monoxide that is more clearly shown by heat-flow calorimetry (77) than by IR spectroscopy. [Pg.241]

Methylzinc hydride was formed by the insertion of excited zinc atoms, in their 3Pi state, into the C-H bond of methane in an argon matrix.229 The MeZnH product was characterized on the basis of its infrared spectrum and determined to be a linear molecule with C v symmetry. The band at 1866.1 cm-1 is due the Zn-H stretch, while the band at 565.5 cm-1 was assigned to the Zn-C stretching vibration. Additional bands for isotopically labeled species were also reported. [Pg.379]

The infrared spectrum of matrix-trapped CF2 (produced by the photolysis of difluorodiazirine, CF2N2) has been examined 28 The three fundamental vibrational frequencies were determined to be 668,1102, and 1222 cm. The intensities of the two stretching fundamentals were sufficiently strong to permit observation of the corresponding absorption of13CF2, from which the bond angle of CF2 was calculated to be approximately 108 °. The gas-phase infrared... [Pg.7]

Infrared Spectrum. The infrared spectrum of gaseous SiF 2 has been recorded from 1050 to 400 cm"1 63 Two absorption bands, centered at 855 and 872 cm 1, were assigned to the symmetric (v j) and antisymmetric (V3) stretching modes, respectively. The assignment was rendered difficult because of the considerable overlap of the two bands. The fundamental bending frequency occurs below the instrumental range of the study, but a value of 345 cm 1 can be determined from the ultraviolet study. The vibrational frequencies were combined with data from a refined microwave study 641 and utilized to calculate force constants and revised thermodynamic functions. [Pg.17]

The infrared spectrum has been used to determine aspirin in combination products. Accuracy of 1-2% has been claimed (cf. 90,91). For aspirin, the absorption maximum at 1765 cm l has been used.92... [Pg.24]

Nalidixic acid has been determined spectrophotometri-cally in tablets after chloroform extraction at a wavelength maximum of 258 nm.(l)(2) Another source reported 259 nm as the maximum for chloroform and 258 nm for 0.1 N NaOH.( ) The infrared spectrum has also been used to identify nalidixic acid in tablets.( )... [Pg.394]

Fig. 5.5. Illustration of the method to determine the percent transmittance of a peak in an infrared spectrum. Fig. 5.5. Illustration of the method to determine the percent transmittance of a peak in an infrared spectrum.
More evidence for the existence of several conformational isomers, at least in liquid and gaseous substances comes from infrared and also Raman spectra. For example each conformer has its own I.R. spectrum, but the peak positions are often different. Thus the C-F bond in equatorial fluorocyclohexane absorbs at 1062 Cm-1, the axial C-F bonds absorbes at 1129 Cm . So the study of infrared spectrum tells, which conformation a molecule has. Not only this, it also helps to tell what percentage of each conformation is present in a mixture and since there is relationship between configuration and conformation in cyclic compounds the configuration can also be frequently determined. [Pg.168]

Suppose the input to the network is an infrared spectrum, from which the network must determine whether the molecule whose spectrum is being assessed contains a carbonyl group. We could require that the network output a value of one if it believes that a carbonyl group is present in the molecule, and zero otherwise. It is very unlikely that the untrained network will generate exactly the correct output when it is presented with the first sample, so the error in its prediction will be nonzero. In that case, the connection weights in the network are modified (see below) to reduce the error, and thus, they make it more likely that the network will provide the correct answer the next time it sees this spectrum. [Pg.372]


See other pages where Infrared spectrum determining is mentioned: [Pg.116]    [Pg.63]    [Pg.1019]    [Pg.116]    [Pg.63]    [Pg.1019]    [Pg.416]    [Pg.20]    [Pg.31]    [Pg.98]    [Pg.393]    [Pg.571]    [Pg.150]    [Pg.357]    [Pg.393]    [Pg.571]    [Pg.162]    [Pg.241]    [Pg.734]    [Pg.746]    [Pg.93]    [Pg.8]    [Pg.534]    [Pg.213]    [Pg.268]    [Pg.374]    [Pg.122]    [Pg.33]    [Pg.242]    [Pg.32]   


SEARCH



Infrared absorption spectra determination

Infrared spectra, determination

Infrared spectra, determination

Polymer structures, infrared spectra determination

© 2024 chempedia.info