Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared spectroscopy interface

Willis, J. N. and Wheeler, L., Use of a gel permeation chromatography-Fourier transform infrared spectroscopy interface for polymer analysis, in Chromatographic Characterization of Polymers, Hyphenated and Multidimensional Techniques, Provder, T., Barth, H. G., and Urban, M. W., Eds., American Chemical Society, Washington, D.C., 1995, chap. 19. [Pg.370]

Iwasita T and Mart F C 1997 In situ infrared spectroscopy at electrochemical interfaces Prog. Surf. Sc/. 55 271... [Pg.320]

Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. Attenuated total redectance (atr) ftir spectroscopy is based on the principle of total internal redection (40). Methods based on internal redection in the uv and visible regions of the spectmm are also common in addition to those in the ir region. The implementation of internal redection in the ir region of the spectmm provides a means of obtaining ir spectra of surfaces or interfaces, thus providing moleculady-specific vibrational information. [Pg.286]

High quahty SAMs of alkyltrichlorosilane derivatives are not simple to produce, mainly because of the need to carefully control the amount of water in solution (126,143,144). Whereas incomplete monolayers are formed in the absence of water (127,128), excess water results in facile polymerization in solution and polysiloxane deposition of the surface (133). Extraction of surface moisture, followed by OTS hydrolysis and subsequent surface adsorption, may be the mechanism of SAM formation (145). A moisture quantity of 0.15 mg/100 mL solvent has been suggested as the optimum condition for the formation of closely packed monolayers. X-ray photoelectron spectroscopy (xps) studies confirm the complete surface reaction of the —SiCl groups, upon the formation of a complete SAM (146). Infrared spectroscopy has been used to provide direct evidence for the hiU hydrolysis of methylchlorosilanes to methylsdanoles at the soHd/gas interface, by surface water on a hydrated siUca (147). [Pg.537]

Some of the techniques included apply more broadly than just to surfaces, interfaces, or thin films for example X-Ray Diffraction and Infrared Spectroscopy, which have been used for half a century in bulk solid and liquid analysis, respectively. They are included here because they have by now been developed to also apply to surfaces. A few techniques that are applied almost entirely to bulk materials (e.g.. Neutron Diffraction) are included because they give complementary information to other methods or because they are referred to significantly in the 10 materials volumes in the Series. Some techniques were left out because they were considered to be too restricted to specific applications or materials. [Pg.764]

Surface analysis has made enormous contributions to the field of adhesion science. It enabled investigators to probe fundamental aspects of adhesion such as the composition of anodic oxides on metals, the surface composition of polymers that have been pretreated by etching, the nature of reactions occurring at the interface between a primer and a substrate or between a primer and an adhesive, and the orientation of molecules adsorbed onto substrates. Surface analysis has also enabled adhesion scientists to determine the mechanisms responsible for failure of adhesive bonds, especially after exposure to aggressive environments. The objective of this chapter is to review the principals of surface analysis techniques including attenuated total reflection (ATR) and reflection-absorption (RAIR) infrared spectroscopy. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) and to present examples of the application of each technique to important problems in adhesion science. [Pg.243]

Infrared spectroscopy, 39, 69 Inorganic melts as electrolytes, 482 oxidation of sulfur dioxide, 482 Interface... [Pg.570]

In situ infrared spectroscopy allows one to obtain stracture-specific information at the electrode-solution interface. It is particularly useful in the study of electrocat-alytic reactions, molecular adsorption, and the adsorption of ions at metal surfaces. [Pg.505]

Interfacial water molecules play important roles in many physical, chemical and biological processes. A molecular-level understanding of the structural arrangement of water molecules at electrode/electrolyte solution interfaces is one of the most important issues in electrochemistry. The presence of oriented water molecules, induced by interactions between water dipoles and electrode and by the strong electric field within the double layer has been proposed [39-41]. It has also been proposed that water molecules are present at electrode surfaces in the form of clusters [42, 43]. Despite the numerous studies on the structure of water at metal electrode surfaces using various techniques such as surface enhanced Raman spectroscopy [44, 45], surface infrared spectroscopy [46, 47[, surface enhanced infrared spectroscopy [7, 8] and X-ray diffraction [48, 49[, the exact nature of the structure of water at an electrode/solution interface is still not fully understood. [Pg.80]

Kizhakevariam N, Weaver MJ. 1994. Structure and reactivity of bimetaUic electrochemical interfaces Infrared spectroscopy studies of carbon monoxide adsorption and formic acid electrooxidation on antimony-modified Pt(lOO) and Pt(lll). Surf Sci 310 183-197. [Pg.242]

Villegas I, Weaver MJ. 1996. Infrared spectroscopy of model electrochemical interfaces in ultra-high vacuum Evidence for coupled cation-anion hydration in the Pt(lll)/K, Cl system. J Phys Chem 100 19502-19511. [Pg.244]

Iwasita T, Nart FC. 1997. In situ infrared spectroscopy at electrochemical interfaces. Prog Surf Sci 55 271-340. [Pg.267]

Zou S, Gomes R, Weaver MJ. 1999. Infrared spectroscopy of carbon monoxide and nitric oxide on palladium(lll) in aqueous solution unexpected adlayer structural differences between electrochemical and ultrahigh-vacuum interfaces. J Electroanal Chem 474 155-166. [Pg.566]

Detection in SFC can be achieved in the condensed phase using optical detectors similar to those used in liquid chromatography or in the gas phase using detectors similar to those used in gas chromatography. Spectroscopic detectors, such as mass spectrometry and Fourier transform infrared spectroscopy, are relatively easily interfaced to SFC compared to the problems observed with liquid mobile phases (see Chapter 9). The range of available detectors for SFC is considered one of its strengths. [Pg.837]

M. Claybourn, Infrared Spectroscopy of Polymers Analysis of Films, Surfaces and Interfaces, Global Press, Chicago, 1998. [Pg.674]

Hansen CL, Skordalakes E, Berger JM, Quake SR (2002) A robust and scalable microfluidic metering method that allows protein crystal growth by free interface diffusion. Proc Natl Acad Sci USA 99 16531-16536 Herzig-Marx R, Queeney KT, Rebecca JJ, Schmidt MA, Jensen KF (2004) Infrared spectroscopy for chemically specific sensing in silicon-based microreactors. Anal Chem 76 6476-6483... [Pg.73]

Vibrational spectroscopies such as Raman and infrared are useful methods for the identification of chemical species. Raman scattering [4] is a second-order process, and the intensities are comparatively low. A quick estimate shows that normal Raman signals generated by species at a surface or an interface are too low to be observable. Furthermore, in the electrochemical situation Raman signals from the interface may be obscured by signals from the bulk of the electrolyte, a problem that also occurs in electrochemical infrared spectroscopy (see Section 15.3)... [Pg.200]

Subtractively normalized interfacial Fourier transform infrared spectroscopy (SNIFTIRS), has been used extensively to examine interactions of species at the electrode/electrolyte interface. In the present work, the method has been extended to probe interactions at the mercury solution interface. The diminished potential dependent frequency shifts of species adsorbed at mercury electrodes are compared with shifts observed for similar species adsorbed at d-band metals. [Pg.338]

Spectroscopic techniques may provide the least ambiguous methods for verification of actual sorption mechanisms. Zeltner et al. (Chapter 8) have applied FTIR (Fourier Transform Infrared) spectroscopy and microcalorimetric titrations in a study of the adsorption of salicylic acid by goethite these techniques provide new information on the structure of organic acid complexes formed at the goethite-water interface. Ambe et al. (Chapter 19) present the results of an emission Mossbauer spectroscopic study of sorbed Co(II) and Sb(V). Although Mossbauer spectroscopy can only be used for a few chemical elements, the technique provides detailed information about the molecular bonding of sorbed species and may be used to differentiate between adsorption and surface precipitation. [Pg.7]

Most earlier papers dealt with the mercury electrode because of its unique and convenient features, such as surface cleanness, smoothness, isotropic surface properties, and wide range of ideal polarizability. These properties are gener y uncharacteristic of solid metal electrodes, so the results of the sohd met electrolyte interface studies are not as explicit as they are for mercury and are often more controversial. This has been shown by Bockris and Jeng, who studied adsorption of 19 different organic compounds on polycrystaUine platinum electrodes in 0.0 IM HCl solution using a radiotracer method, eUipsometry, and Fourier Transform Infrared Spectroscopy. The authors have determined and discussed adsorption isotherms and the kinetics of adsorption of the studied compounds. Their results were later critically reviewed by Wieckowski. ... [Pg.16]

Rossi et al. [30] evaluated rheologically mucins of different origin with polyacrylic acid and sodium carboxymethyl cellulose. The same group also reported a novel rheological approach based on a stationary viscoelastic test (creep test) to describe the interaction between mucoadhesive polymers and mucins [31,32]. Jabbari et al. [33] used attenuated total-reflection infrared spectroscopy to investigate the ehain interpenetration of polyaciylic acid in the mucin interface. [Pg.177]


See other pages where Infrared spectroscopy interface is mentioned: [Pg.126]    [Pg.74]    [Pg.64]    [Pg.126]    [Pg.74]    [Pg.64]    [Pg.1264]    [Pg.1948]    [Pg.224]    [Pg.417]    [Pg.418]    [Pg.189]    [Pg.67]    [Pg.364]    [Pg.95]    [Pg.501]    [Pg.504]    [Pg.453]    [Pg.344]    [Pg.248]    [Pg.78]    [Pg.127]    [Pg.243]    [Pg.268]    [Pg.338]    [Pg.228]    [Pg.177]    [Pg.264]    [Pg.158]   
See also in sourсe #XX -- [ Pg.64 ]




SEARCH



Infrared Reflection Absorption Spectroscopy of Monolayers at the Air-Water Interface

Infrared Spectroscopy at Surfaces and Interfaces

Infrared interfaces

Infrared spectroscopy Interface properties

Interface spectroscopy

© 2024 chempedia.info