Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Infrared interfaces

If machine or detergent manufacturer s research laboratories develop new improved wash programs, these can very easily be transferred retrospectively to machines in situ using existing update technology. Fig. 3.13 shows how a service technician could use a special infrared interface. Other manufacturers achieve the same result using a conventional PC interface. [Pg.33]

As washing detergent manufacturers keep developing new products, washing processes also need to be adapted several times over the lifetime of a washing machine. New programs could be transferred to the machines every so often, either by a technician through an infrared interface or conventional PC interface, or simply by a download from the Internet. [Pg.226]

Interfaces may also be very useful in machine repair. The service technician can obtain detailed information about the machine status via an appropriate diagnostic program and then carry out the repair. This can be done through direct contact, e.g. with electrical or infrared interfaces, or in a remote way via internet access. [Pg.226]

As far as configuring the interface is concerned, very little needs to be done. The infrared interfaces are enabled by default on most computers, handhelds, and printers equipped with them. The only additional item that must be configured is the print driver on the PDA, handheld, or computer. The driver must be the correct one for the printer to which you are printing. [Pg.288]

Gurka DF, Titus R, Giffiths PR, et al. 1987. Evaluation of an improved single-beam gas chromatography/Fourier transform infrared interface for environmental analysis. Anal Chem 59 2362-2369. [Pg.472]

Infrared communication now is available in many AAC devices. Infrared output supports the same functions as the RS-232c serial data output, but without requiring direct wiring or linking between operating devices. Infrared interfaces providing computer access improve the independence of AAC users because no physical connection needs to be manipulated to activate the system. Infrared interfaces can perform as environmental control units by learning the codes of entertainment and other electronic systems. [Pg.1187]

Wheeler LM, Willis JN. Gel-permeation chromatography Fourier-transform infrared interface for polymer analysis. Appl Spec 1993 47 1128-30. [Pg.126]

In Fourier Transform Infrared Interface Science Scheuing, D. ... [Pg.47]

The external reflection of infrared radiation can be used to characterize the thickness and orientation of adsorbates on metal surfaces. Buontempo and Rice [153-155] have recently extended this technique to molecules at dielectric surfaces, including Langmuir monolayers at the air-water interface. Analysis of the dichroic ratio, the ratio of reflectivity parallel to the plane of incidence (p-polarization) to that perpendicular to it (.r-polarization) allows evaluation of the molecular orientation in terms of a tilt angle and rotation around the backbone [153]. An example of the p-polarized reflection spectrum for stearyl alcohol is shown in Fig. IV-13. Unfortunately, quantitative analysis of the experimental measurements of the antisymmetric CH2 stretch for heneicosanol [153,155] stearly alcohol [154] and tetracosanoic [156] monolayers is made difflcult by the scatter in the IR peak heights. [Pg.127]

Iwasita T and Mart F C 1997 In situ infrared spectroscopy at electrochemical interfaces Prog. Surf. Sc/. 55 271... [Pg.320]

The experimental data and arguments by Trassatti [25] show that at the PZC, the water dipole contribution to the potential drop across the interface is relatively small, varying from about 0 V for An to about 0.2 V for In and Cd. For transition metals, values as high as 0.4 V are suggested. The basic idea of water clusters on the electrode surface dissociating as the electric field is increased has also been supported by in situ Fourier transfomr infrared (FTIR) studies [26], and this model also underlies more recent statistical mechanical studies [27]. [Pg.594]

In order to achieve a reasonable signal strength from the nonlinear response of approximately one atomic monolayer at an interface, a laser source with high peak power is generally required. Conuuon sources include Q-switched ( 10 ns pulsewidth) and mode-locked ( 100 ps) Nd YAG lasers, and mode-locked ( 10 fs-1 ps) Ti sapphire lasers. Broadly tunable sources have traditionally been based on dye lasers. More recently, optical parametric oscillator/amplifier (OPO/OPA) systems are coming into widespread use for tunable sources of both visible and infrared radiation. [Pg.1281]

Figure Bl.5.15 SFG spectrum for the water/air interface at 40 °C using the ssp polarization combination (s-, s- and p-polarized sum-frequency signal, visible input and infrared input beams, respectively). The peaks correspond to OH stretching modes. (After [ ].)... Figure Bl.5.15 SFG spectrum for the water/air interface at 40 °C using the ssp polarization combination (s-, s- and p-polarized sum-frequency signal, visible input and infrared input beams, respectively). The peaks correspond to OH stretching modes. (After [ ].)...
Most of the experimental information concerning copolymer microstructure has been obtained by physical methods based on modern instrumental methods. Techniques such as ultraviolet (UV), visible, and infrared (IR) spectroscopy, NMR spectroscopy, and mass spectroscopy have all been used to good advantage in this type of research. Advances in instrumentation and computer interfacing combine to make these physical methods particularly suitable to answer the question we pose With what frequency do particular sequences of repeat units occur in a copolymer. [Pg.460]

Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy. Attenuated total redectance (atr) ftir spectroscopy is based on the principle of total internal redection (40). Methods based on internal redection in the uv and visible regions of the spectmm are also common in addition to those in the ir region. The implementation of internal redection in the ir region of the spectmm provides a means of obtaining ir spectra of surfaces or interfaces, thus providing moleculady-specific vibrational information. [Pg.286]

Instrumental Interface. Gc/fdr instmmentation has developed around two different types of interfacing. The most common is the on-the-fly or flow cell interface in which gc effluent is dkected into a gold-coated cell or light pipe where the sample is subjected to infrared radiation (see Infrared and raman spectroscopy). Infrared transparent windows, usually made of potassium bromide, are fastened to the ends of the flow cell and the radiation is then dkected to a detector having a very fast response-time. In this light pipe type of interface, infrared spectra are generated by ratioing reference scans obtained when only carrier gas is in the cell to sample scans when a gc peak appears. [Pg.402]

High quahty SAMs of alkyltrichlorosilane derivatives are not simple to produce, mainly because of the need to carefully control the amount of water in solution (126,143,144). Whereas incomplete monolayers are formed in the absence of water (127,128), excess water results in facile polymerization in solution and polysiloxane deposition of the surface (133). Extraction of surface moisture, followed by OTS hydrolysis and subsequent surface adsorption, may be the mechanism of SAM formation (145). A moisture quantity of 0.15 mg/100 mL solvent has been suggested as the optimum condition for the formation of closely packed monolayers. X-ray photoelectron spectroscopy (xps) studies confirm the complete surface reaction of the —SiCl groups, upon the formation of a complete SAM (146). Infrared spectroscopy has been used to provide direct evidence for the hiU hydrolysis of methylchlorosilanes to methylsdanoles at the soHd/gas interface, by surface water on a hydrated siUca (147). [Pg.537]

Some of the techniques included apply more broadly than just to surfaces, interfaces, or thin films for example X-Ray Diffraction and Infrared Spectroscopy, which have been used for half a century in bulk solid and liquid analysis, respectively. They are included here because they have by now been developed to also apply to surfaces. A few techniques that are applied almost entirely to bulk materials (e.g.. Neutron Diffraction) are included because they give complementary information to other methods or because they are referred to significantly in the 10 materials volumes in the Series. Some techniques were left out because they were considered to be too restricted to specific applications or materials. [Pg.764]

SFG [4.309, 4.310] uses visible and infrared lasers for generation of their sum frequency. Tuning the infrared laser in a certain spectral range enables monitoring of molecular vibrations of adsorbed molecules with surface selectivity. SFG includes the capabilities of SHG and can, in addition, be used to identify molecules and their structure on the surface by analyzing the vibration modes. It has been used to observe surfactants at liquid surfaces and interfaces and the ordering of interfacial... [Pg.264]

Surface analysis has made enormous contributions to the field of adhesion science. It enabled investigators to probe fundamental aspects of adhesion such as the composition of anodic oxides on metals, the surface composition of polymers that have been pretreated by etching, the nature of reactions occurring at the interface between a primer and a substrate or between a primer and an adhesive, and the orientation of molecules adsorbed onto substrates. Surface analysis has also enabled adhesion scientists to determine the mechanisms responsible for failure of adhesive bonds, especially after exposure to aggressive environments. The objective of this chapter is to review the principals of surface analysis techniques including attenuated total reflection (ATR) and reflection-absorption (RAIR) infrared spectroscopy. X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), and secondary ion mass spectrometry (SIMS) and to present examples of the application of each technique to important problems in adhesion science. [Pg.243]


See other pages where Infrared interfaces is mentioned: [Pg.1009]    [Pg.85]    [Pg.101]    [Pg.280]    [Pg.1009]    [Pg.85]    [Pg.101]    [Pg.280]    [Pg.151]    [Pg.244]    [Pg.1264]    [Pg.1264]    [Pg.1294]    [Pg.1948]    [Pg.2749]    [Pg.269]    [Pg.1]    [Pg.192]    [Pg.201]    [Pg.201]    [Pg.424]    [Pg.402]    [Pg.224]    [Pg.398]    [Pg.119]    [Pg.1689]    [Pg.224]    [Pg.417]    [Pg.418]    [Pg.418]    [Pg.423]    [Pg.245]   
See also in sourсe #XX -- [ Pg.2 , Pg.416 ]




SEARCH



Infrared Reflection Absorption Spectroscopy of Monolayers at the Air-Water Interface

Infrared Spectroscopy at Surfaces and Interfaces

Infrared spectroscopy Interface properties

Infrared spectroscopy interface

Interface liquid chromatography-infrared

© 2024 chempedia.info