Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inductively coupled plasma emission spectrophotometry

ICP Inductively coupled plasma emission spectrophotometry IP image plate... [Pg.2]

It has been reported that the differential determination of arsenic [36-41] and also antimony [42,43] is possible by hydride generation-atomic absorption spectrophotometry. The HGA-AS is a simple and sensitive method for the determination of elements which form gaseous hydrides [35,44-47] and mg/1 levels of these elements can be determined with high precision by this method. This technique has also been applied to analyses of various samples, utilising automated methods [48-50] and combining various kinds of detection methods, such as gas chromatography [51], atomic fluorescence spectrometry [52,53], and inductively coupled plasma emission spectrometry [47]. [Pg.339]

Camara Rica, C. and Kirkbright, G.F. (1982). Determination of trace concentrations of lead and nickel in human milk by electrothermal atomisation atomic absorption spectrophotometry and inductively coupled plasma emission spectroscopy. Sci. Tot. Environ. 22,193-201. [Pg.484]

Several different methods have been utilized for measuring iron in these biological samples. However, spectrophotometry is the most widely used because it does not require unusual equipment and is readily amenable to automation. Atomic absorption spectrometry is effectively used for tissue and urine analyses [33-35], but unreliable results are obtained with serum due to sensitivity limitations as well as matrix and hemoglobin interferences [35]. Other methods utilizing inductively coupled plasma emission spectroscopy [36], coulometry [37], proton induced X-ray emission [38], neutron activation analysis [39], radiative energy attenuation [40], and radiometry with Fe [41] have been described but, with the exception of coulometry, have not become standard procedures in the clinical chemistry laboratory, inasmuch as sophisticated and expensive instrumentation is required in some instances. However, some of them, e.g., neutron activation, may be the method of choice for definitive accurate analysis. [Pg.417]

The most common analytical methods that can sensitively measure manganese include neutron activation analysis, X-ray fluorescence, proton-induced X-ray emission, inductively coupled plasma emission, EPR, and flameless atomic absorption spectrophotometry (AAS). Currently, the most common method employed is flameless AAS. All of these methods, with the exception of EPR, measure the total concentration of manganese in the samples. EPR allows selective measurement of bound versus free manganese. [Pg.257]

Potassium is analyzed in chemicals that are used in the fertilizer industry and in finished fertilizers by flame photometric methods (44) or volumetric sodium tertraphenylboron methods (45) as approved by the AO AC. Gravimetric deterrnination of potassium as K2PtClg, known as the Lindo-Gladding method (46), and the wet-digestion deterrnination of potassium (47) have been declared surplus methods by the AO AC. Other methods used for control purposes and special analyses include atomic absorption spectrophotometry, inductively coupled plasma (icp) emission spectrophotometry, and a radiometric method based on measuring the radioactivity of the minute amount of the isotope present in all potassium compounds (48). [Pg.536]

Numerous methods have been pubUshed for the determination of trace amounts of tellurium (33—42). Instmmental analytical methods (qv) used to determine trace amounts of tellurium include atomic absorption spectrometry, flame, graphite furnace, and hydride generation inductively coupled argon plasma optical emission spectrometry inductively coupled plasma mass spectrometry neutron activation analysis and spectrophotometry (see Mass spectrometry Spectroscopy, optical). Other instmmental methods include polarography, potentiometry, emission spectroscopy, x-ray diffraction, and x-ray fluorescence. [Pg.388]

Spectrophotometry Flow-injection analysis Gas chromatography Inductively coupled plasma atomic emission spectrometry Miscellaneous... [Pg.17]

It is seen by examination of Table 1.11(b) that a wide variety of techniques have been employed including spectrophotometry (four determinants), combustion and wet digestion methods and inductively coupled plasma atomic emission spectrometry (three determinants each), atomic absorption spectrometry, potentiometric methods, molecular absorption spectrometry and gas chromatography (two determinants each), and flow-injection analysis and neutron activation analysis (one determinant each). Between them these techniques are capable of determining boron, halogens, total and particulate carbon, nitrogen, phosphorus, sulphur, silicon, selenium, arsenic antimony and bismuth in soils. [Pg.96]

In 1C, the election-detection mode is the one based on conductivity measurements of solutions in which the ionic load of the eluent is low, either due to the use of eluents of low specific conductivity, or due to the chemical suppression of the eluent conductivity achieved by proper devices (see further). Nevertheless, there are applications in which this kind of detection is not applicable, e.g., for species with low specific conductivity or for species (metals) that can precipitate during the classical detection with suppression. Among the techniques that can be used as an alternative to conductometric detection, spectrophotometry, amperometry, and spectroscopy (atomic absorption, AA, atomic emission, AE) or spectrometry (inductively coupled plasma-mass spectrometry, ICP-MS, and MS) are those most widely used. Hence, the wide number of techniques available, together with the improvement of stationary phase technology, makes it possible to widen the spectrum of substances analyzable by 1C and to achieve extremely low detection limits. [Pg.406]

GFAAS = graphite furnace (flameless) atomic absorption spectroscopy TLC = thin layer chromatography HFP-AES = high frequency plasma-atomic emission spectroscopy NAA = neutron atomic analysis ICP-AES = inductively coupled plasma-atomic emission spectroscopy AAS = atomic absorption spectrometry GSE = graphite spectroscopic electrode UV = ultraviolet spectrophotometry PD = photodensitometer and (3,5-diBr-PADAP) = 2(-3,-5-dibromo-2-pyridylazo)-5- diethyl-ami nophenol. [Pg.124]

Earlier methods for the determination of uranium in soils employed spectrophotometry of the chromophore produced with arsenic(III) at 655 nm [237 ] and neutron activation analysis [238]. More recently, laser fluorescence [239] and in situ laser ablation-inductively coupled plasma atomic emission spectrometry [240] have been employed to determine uranium in soil. D Silva et al. [241] compared the use of hydrogen chloride gas for the remote dissolution of uranium in soil with microwave digestion. [Pg.58]

Inductively coupled plasma atomic emission spectrometry and inductively coupled plasma mass spectrometry have been applied to the determination of zinc, as discussed under Multi-Metal Analysis of Soils in Sects. 2.55 (inductively coupled plasma atomic emission spectrometry) and 2.55 (inductively coupled plasma mass spectrometry). Other techniques include atomic absorption spectrometry (Sect. 2.55), X-ray fluorescence spectroscopy (Sect. 2.55), electron probe microanalysis (Sect. 2.55), photon activation analysis (Sect. 2.55), emission spectrometry (Sect. 2.55), neutron activation analysis (Sect. 2.55), spectrophotometry (Sect. 2.55) and ion chromatography (Sect. 2.55). [Pg.60]

HPLC units have been interfaced with a wide range of detection techniques (e.g. spectrophotometry, fluorimetry, refractive index measurement, voltammetry and conductance) but most of them only provide elution rate information. As with other forms of chromatography, for component identification, the retention parameters have to be compared with the behaviour of known chemical species. For organo-metallic species element-specific detectors (such as spectrometers which measure atomic absorption, atomic emission and atomic fluorescence) have proved quite useful. The state-of-the-art HPLC detection system is an inductively coupled plasma/MS unit. HPLC applications (in speciation studies) include determination of metal alkyls and aryls in oils, separation of soluble species of higher molecular weight, and separation of As111, Asv, mono-, di- and trimethyl arsonic acids. There are also procedures for separating mixtures of oxyanions of N, S or P. [Pg.18]

All raw and treated coals were analyzed at Ames Laboratory for trace, major, and minor elements using energy-dispersive x-ray fluorescence (XRF), inductively coupled plasma-atomic emission spectroscopy (ICP-AES), and atomic absorption spectrophotometry (AA). General analytical procedures employed for each of these techniques are discussed separately below. [Pg.75]

One of the most challenging aspects of atomic spectrometry is the incredibly wide variety of sample types that require elemental analysis. Samples cover the gamut of solids, liquids, and gases. By the nature of most modem spectrochemical methods, the latter two states are much more readily presented to sources that operate at atmospheric pressure. The most widely used of these techniques are flame and graphite furnace atomic absorption spectrophotometry (FAAS and GF-AAS) [1,2] and inductively coupled plasma atomic emission and mass spectrometries (ICP-AES and MS) [3-5]. As described in other chapters of this volume, ICP-MS is the workhorse technique for the trace element analysis of samples in the solution phase—either those that are native liquids or solids that are subjected to some sort of dissolution procedure. [Pg.261]

Analytical techniques used for clinical trace metal analysis include photometry, atomic absorption spectrophotometry (AAS), inductively coupled plasma optical emission (ICP-OES), and inductively coupled plasma mass spectrometry (ICP-MS). Other techniques, such as neutron activation analysis (NAA) and x-ray fluorescence (XRF), and electrochemical methods, such as anodic stripping voltammetry (ASV), are used less commonly For example. NAA requires a nuclear irradiation facility and is not readily available and ASV requires completely mineralized solutions for analysis, which is a time-consuming process. [Pg.1121]

Problems with contamination and losses of volatile boron compounds during sample preparation have limited the reliable documentation of boron concentrations in human tissue and body fluids. A complex technique involving a porous graphite column—inductively coupled plasma-atomic emission spectrophotometry (ICP-AES)— and an ICP time of flight mass spectrometer (TOF-MS) has been developed for investigations of boron neutron capture in cancer therapy. Adaptation of this method to nutritional studies of boron should be possible. [Pg.1143]

The transport of Sr - ions across the membrane was also monitored by the addition of inactive strontium at a concentration of 5 mg/mL as a carrier in the feed compartment. Samples from the receiver compartment were drawn at regular intervals, and the Sr concentrations were determined using the inductively coupled plasma atomic emission spectrophotometry (ICP-AES) method. [Pg.136]

A number of analytical techniques have been used to determine ppm to ppt levels of vanadium in biological materials. These include neutron activation analysis (NAA), graphite furnace atomic absorption spectrometry (GFAAS), spectrophotometry, isotope dilution thermal ionization-mass spectrometry (IDMS), and inductively coupled plasma atomic emission spectrometry (ICP-AES). Table 6-1 summarizes the analytical methods for determining vanadium in biological materials. [Pg.82]

Inductively coupled argon plasma emission spectrophotometry (ASTM D-5708) has an advantage over atomic absorption spectrophotometry (ASTM D-4628, ASTM D-5863) because it can provide more complete elemental composition data than the atomic absorption method. Flame emission spectroscopy is often used successfully in conjunction with atomic absorption spectrophotometry (ASTM D-3605). X-ray fluorescence spectrophotometry (ASTM D-4927, ASTM D-6443) is also sometimes used, but matrix effects can be a problem. [Pg.42]

It is necessary, however, to use other methods, such as atomic absorption, inductively coupled argon plasma emission spectrophotometry, and ion chromatography to determine the composition of the salts present. A method involving application of extraction and volumetric titration is also used (IP 77). [Pg.43]

The chemical methods for detecting total strontium include spectrophotometry, fluorometry, kinetic phosphorescence, atomic absorption spectroscopy (e.g., flame and graphite furnaces), inductively coupled plasma spectroscopy atomic emission and mass spectrometry applications (i.e., ICP-AES and ICP-MS). [Pg.288]

Pan, L., Qin, Y.C., Hu, B. and Jiang, Z.C. (2006) Determination of Co and Ni in environmental samples by low temperature electrothermal vaporization inductively coupled plasma optical emission spectrophotometry using diethyldithiophosphate (DDTP) as a chemical modifier. Fenxi Shiyanshi, 25 (8), 45 9. [Pg.63]


See other pages where Inductively coupled plasma emission spectrophotometry is mentioned: [Pg.60]    [Pg.60]    [Pg.524]    [Pg.63]    [Pg.259]    [Pg.208]    [Pg.138]    [Pg.297]    [Pg.162]    [Pg.381]    [Pg.63]    [Pg.3367]    [Pg.30]    [Pg.95]    [Pg.546]   
See also in sourсe #XX -- [ Pg.8 ]




SEARCH



Coupled Plasma

Emission spectrophotometry

Induction-coupled plasma

Inductive coupled plasma

Inductive coupling

Inductively couple plasma

Inductively coupled

Inductively coupled plasma emission

© 2024 chempedia.info