Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inductively coupled plasma/atomic emission monitoring

Chapters 7 and 8 describe two major techniques for the monitoring of trace elements in environmental samples atomic absorption (AA) and inductively coupled plasma-atomic emission spectroscopy (ICP). AA is most ideally suited for analyses where a limited number of trace metal concentrations are needed with high accuracy and precision. ICP has the advantage of multielement analysis with high speed. [Pg.1]

Ultraviolet-visible (UV-Vis) spectrophotometric detectors are used to monitor chromatographic separations. However, this type of detection offers very little specificity. Element specific detectors are much more useful and important. Atomic absorption spectrometry (AAS), inductively coupled plasma-atomic emission spectroscopy (ICPAES) and inductively coupled plasma-mass spectrometry (ICP-MS) are often used in current studies. The highest sensitivity is achieved by graphite furnace-AAS and ICP-MS. The former is used off-line while the latter is coupled to the chromatographic column and is used on-line . [Pg.403]

Maintaining the quality of food is a far more complex problem than the quality assurance of non-food products. Analytical methods are an indispensable monitoring tool for controlling levels of substances essential for health and also of toxic substances, including heavy metals. The usual techniques for detecting elements in food are flame atomic absorption spectroscopy (FAAS), graphite furnace atomic absorption spectrometry (GF AAS), hydride generation atomic absorption spectrometry (HG AAS), cold vapour atomic absorption spectrometry (CV AAS), inductively coupled plasma atomic emission spectrometry (ICP AES), inductively coupled plasma mass spectrometry (ICP MS) and neutron activation analysis (NAA). [Pg.204]

USEPA (1994) Determination of metal and trace elements in water and wastes by inductively coupled plasma-atomic emission Sspectrometry - Method 200.7, USEPA, Environmental Monitoring and Support Laboratory, Cincinnati, OH, May 1994. USEPA Washington, DC... [Pg.115]

The transport of Sr - ions across the membrane was also monitored by the addition of inactive strontium at a concentration of 5 mg/mL as a carrier in the feed compartment. Samples from the receiver compartment were drawn at regular intervals, and the Sr concentrations were determined using the inductively coupled plasma atomic emission spectrophotometry (ICP-AES) method. [Pg.136]

The separation of yttrium from the lanthanides is performed by selective oxidation, reduction, fractionated crystallization, or precipitation, ion-exchange and liquid-liquid extraction. Methods for determination include arc spectrography, flame photometry and atomic absorption spectrometry with the nitrous oxide acetylene flame. The latter method improved the detection limits of yttrium in the air, rocks and other components of the natural environment (Deuber and Heim 1991 Welz and Sperling 1999).Other analytical methods useful for sensitive monitoring of trace amounts of yttrium are X-ray emission spectroscopy, mass spectrometry and neutron activation analysis (NAA) the latter method utilizes the large thermal neutron cross-section of yttrium. For high-sensitivity analysis of yttrium, inductively coupled plasma atomic emission spectroscopy (ICP-AES) is especially recommended for solid samples, and inductively coupled plasma mass spectroscopy (ICP-MS) for liquid samples (Reiman and Caritat 1998). [Pg.1194]

This field provides a brief description of the suggested monitoring and analysis method for quantitative determination of a particular substance. For example, a method for quantitative determination has been developed for cadmium, copper, manganese, and lead in water by means of co-precipitation with zirconium hydroxide followed by subsequent analysis by atomic adsorption spectrometry. An Inductively Coupled Plasma-Atomic Emission Spectrophotometric method has been employed by the Environmental Protection Agency (EPA Method 200.7) for the determination of dissolved, suspended, or total elements in drinking water, surface water, and domestic and industrial wastewaters. [Pg.1068]

Lo, F.B. and Aral, D.K. (1989) Biological monitoring of toxic metals in urine by simultaneous inductively coupled plasma-atomic emission spectrometry. Am. Ind. Hyg. Assoc. J., 50, 245-251. [Pg.457]

An EPA-approved procedure for the analysis of plutonium in water is listed in Table 6-2. In addition, the following ASTM standard methods relate to the measurement of plutonium in water D 3648, D 3084, D 3972, and D 1943 (ASTM 1981, 1982a, 1982b, 1987). Recent work has focused on more rapid analytical methods in order to determine monitor plutonium levels in waste process streams at nuclear facilities. For example, Edelson et al. (1986) have investigated the applications of inductively-coupled plasma-atomic emission spectrometry (ICP-EAS) to routinely analyze water samples. [Pg.120]

Several spectroscopic methods have been used to monitor the levels of heavy metals in man, fossil fuels and environment. They include flame atomic absorption spectrometry (AAS), atomic emission spectroscopy (AES), graphite furnace atomic absorption sp>ectrometry (GFAAS), inductively coupled plasma-atomic emission sp>ectroscopy (ICP/AES), inductively coupled plasma mass spectrometry (ICP/MS), x-ray fluorescence sp>ectroscopy (XRFS), isotope dilution mass spectrometry (IDMS), electrothermal atomic absorption spectrometry (ETAAS) e.t.c. Also other spectroscopic methods have been used for analysis of the quality composition of the alternative fuels such as biodiesel. These include Nuclear magnetic resonance spectroscopy (NMR), Near infrared spectroscopy (NIR), inductively coupled plasma optical emission spectrometry (ICP-OES) e.t.c. [Pg.26]

There are different spectrophotometric techniques for analysis of contaminants in biofuels. Simultaneous detection of the absorption spectrum and refractive index ratio with a spectrophotometer for monitoring contaminants in bioethanol has been carried out by Kontturi et al., 2011. Inductively Coupled Plasma Atomic Emission Spectrometry and optical emission spectral analysis with inductively coupled plasma (ICP-OES) have also been used to analyze biodiesel samples for trace metals (ASTM, 2007 ECS, 2006). An ICP-MS instrument fitted with an octopole reaction system (ORS) was used to directly measure the inorganic contents of several biofuel materials. Following sample prepwation by simple... [Pg.34]

The dry samples of silica-coated alumina were analyzed by inductively coupled plasma-atomic emission spectroscopy (ICP-AES). Specific surface area was determined by nitrogen adsorption (BET). Particle-size determination was made by low-angle forward scattering of light from a laser beam (Leeds and Northrup s Microtrac particle sizer) and by monitoring sedimentation with a finely collimated beam of low-energy x-rays and a detector (Micromeritics Sedigraph 5100). [Pg.703]

Luminescence molecular detectors have also been used for online monitoring of dissolution tests and the characterization of toxic residues using bioluminescence assays. Atomic (atomic absorption spectroscopy, inductively coupled plasma-atomic emission spectroscopy (ICP-AES)) detectors have been coupled to robotic stations either through a continuous system acting as interface or by direct aspiration into an instrument from a sample vial following treatment by the robot. Mass spectrometric and nuclear magnetic resonance (NMR) detectors... [Pg.4311]

When gas chromatography is used to separate organometallic compounds, a number of detectors can be used. Conunon detectors such as Ihe FID, FPD, ECD, and MS have been employed. The most sensitive and selective detector for organometallic species is the atomic emission detector (113). The effluent from the GC enters a small chamber, and a microwave radiation is used to generate plasma. The intensity of the atomic emission radiation from the metal is monitored at a specific wavelength. Sometimes gas chromatography is interfaced with other instrumentation, such as atomic absorption spectrometry (AAS), inductively coupled plasma atomic emission spectrometry (ICPAES), inductively coupled plasma mass spectrometry (ICPMS), to detect the metal species. [Pg.852]

There is also a standard test method for determination of major and minor elements in coal ash by inductively coupled plasma (ICP)-atomic emission spectrometry (ASTM D-6349). In the test method, the sample to be analyzed is ashed under standard conditions and ignited to constant weight. The ash is fused with a fluxing agent followed by dissolution of the melt in dilute acid solution. Alternatively, the ash is digested in a mixture of hydrofluoric, nitric, and hydrochloric acids. The solution is analyzed by (ICP)-atomic emission spectrometry for the elements. The basis of the method is the measurement of atomic emissions. Aqueous solutions of the samples are nebulized, and a portion of the aerosol that is produced is transported to the plasma torch, where excitation and emission occurs. Characteristic line emission spectra are produced by a radio-frequency inductively coupled plasma. A grating monochromator system is used to separate the emission lines, and the intensities of the lines are monitored by photomultiplier tube or photodiode array detection. The photocurrents from the detector... [Pg.104]

Indicator reaction, kinetics A fast reaction involving an indicator species that ean be used to monitor the reaction of interest. Inductively coupled plasma (ICP) spectroscopy A method that makes use of an inert gas (usually argon) plasma formed by the absorption of radio-frequency radiation to atomize and excite a sample for atomic emission spectroscopy. [Pg.1110]


See other pages where Inductively coupled plasma/atomic emission monitoring is mentioned: [Pg.134]    [Pg.673]    [Pg.392]    [Pg.89]    [Pg.373]    [Pg.134]    [Pg.4560]    [Pg.378]    [Pg.95]    [Pg.768]    [Pg.324]    [Pg.15]    [Pg.168]    [Pg.391]    [Pg.561]    [Pg.23]    [Pg.18]    [Pg.243]    [Pg.252]    [Pg.224]    [Pg.30]    [Pg.1599]    [Pg.15]    [Pg.244]    [Pg.337]    [Pg.221]    [Pg.3367]    [Pg.219]    [Pg.1576]    [Pg.395]    [Pg.504]    [Pg.485]   
See also in sourсe #XX -- [ Pg.110 ]




SEARCH



Atomic coupling

Atomic emission

Coupled Plasma

Induction-coupled plasma

Inductive coupled plasma

Inductive coupling

Inductively couple plasma

Inductively coupled

Inductively coupled plasma atomic

Inductively coupled plasma atomic emission

Inductively coupled plasma emission

Monitors/monitoring emissions

PLASMA ATOMIC EMISSION

Plasma monitoring

© 2024 chempedia.info