Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Inclusion alcohol

Fusel Oil. Fusel oil is an inclusive term for heavier, pungent tasting alcohols produced during fermentation. Fusel oils are composed of a mixture of / -propyl, isobutyl, and isoamyl alcohols. [Pg.80]

Molecular Interactions. Various polysaccharides readily associate with other substances, including bile acids and cholesterol, proteins, small organic molecules, inorganic salts, and ions. Anionic polysaccharides form salts and chelate complexes with cations some neutral polysaccharides form complexes with inorganic salts and some interactions are stmcture specific. Starch amylose and the linear branches of amylopectin form inclusion complexes with several classes of polar molecules, including fatty acids, glycerides, alcohols, esters, ketones, and iodine/iodide. The absorbed molecule occupies the cavity of the amylose helix, which has the capacity to expand somewhat to accommodate larger molecules. The starch—Hpid complex is important in food systems. Whether similar inclusion complexes can form with any of the dietary fiber components is not known. [Pg.71]

The direct combination of selenium and acetylene provides the most convenient source of selenophene (76JHC1319). Lesser amounts of many other compounds are formed concurrently and include 2- and 3-alkylselenophenes, benzo[6]selenophene and isomeric selenoloselenophenes (76CS(10)159). The commercial availability of thiophene makes comparable reactions of little interest for the obtention of the parent heterocycle in the laboratory. However, the reaction of substituted acetylenes with morpholinyl disulfide is of some synthetic value. The process, which appears to entail the initial formation of thionitroxyl radicals, converts phenylacetylene into a 3 1 mixture of 2,4- and 2,5-diphenylthiophene, methyl propiolate into dimethyl thiophene-2,5-dicarboxylate, and ethyl phenylpropiolate into diethyl 3,4-diphenylthiophene-2,5-dicarboxylate (Scheme 83a) (77TL3413). Dimethyl thiophene-2,4-dicarboxylate is obtained from methyl propiolate by treatment with dimethyl sulfoxide and thionyl chloride (Scheme 83b) (66CB1558). The rhodium carbonyl catalyzed carbonylation of alkynes in alcohols provides 5-alkoxy-2(5//)-furanones (Scheme 83c) (81CL993). The inclusion of ethylene provides 5-ethyl-2(5//)-furanones instead (82NKK242). The nickel acetate catalyzed addition of r-butyl isocyanide to alkynes provides access to 2-aminopyrroles (Scheme 83d) (70S593). [Pg.135]

Resoles are usually those phenolics made under alkaline conditions with an excess of aldehyde. The name denotes a phenol alcohol, which is the dominant species in most resoles. The most common catalyst is sodium hydroxide, though lithium, potassium, magnesium, calcium, strontium, and barium hydroxides or oxides are also frequently used. Amine catalysis is also common. Occasionally, a Lewis acid salt, such as zinc acetate or tin chloride will be used to achieve some special property. Due to inclusion of excess aldehyde, resoles are capable of curing without addition of methylene donors. Although cure accelerators are available, it is common to cure resoles by application of heat alone. [Pg.874]

Novolacs are often modified through alkylations based on reactions with monomers other than, and in addition to, aldehydes during their manufacture. Examples might be inclusion of styrene, divinyl benzene, dicyclopentadiene, drying oils, or various alcohols. Despite significant production of all of these variants, most novolac volume is produced using phenol and formaldehyde. [Pg.920]

The milder metal hydnde reagents are also used in stereoselective reductions Inclusion complexes of amine-borane reagent with cyclodexnins reduce ketones to opucally active alcohols, sometimes in modest enantiomeric excess [59] (equation 48). Diisobutylaluminum hydride modified by zmc bromide-MMA. A -tetra-methylethylenediamme (TMEDA) reduces a,a-difluoro-[i-hydroxy ketones to give predominantly erythro-2,2-difluoro-l,3-diols [60] (equation 49). The three isomers are formed on reduction with aluminum isopropoxide... [Pg.308]

These equations show that hydrophobic and steric (van der Waals) interactions are of prime importance in the inclusion processes of cyclodextrin-alcohol systems. The coefficient of Es was positive in sign for an a-cyclodextrin system and negative for a P-cyclodextrin system. These clear-cut differences in sign reflect the fact that a bulky alcohol is subject to van der Waals repulsion by the a-cyclodextrin cavity and to van der Waals attraction by the p-cyclodextrin cavity. [Pg.71]

Most resolution is done on carboxylic acids and often, when a molecule does not contain a carboxyl group, it is converted to a carboxylic acid before resolution is attempted. However, the principle of conversion to diastereomers is not confined to carboxylic acids, and other groupsmay serve as handles to be coupled to an optically active reagent. Racemic bases can be converted to diastereomeric salts with active acids. Alcohols can be converted to diastereomeric esters, aldehydes to diastereomeric hydrazones, and so on. Even hydrocarbons can be converted to diastereomeric inclusion... [Pg.151]

More recently, the same type of hgand was used to form chiral iridium complexes, which were used as catalysts in the hydrogenation of ketones. The inclusion of hydrophihc substituents in the aromatic rings of the diphenylethylenediamine (Fig. 23) allowed the use of the corresponding complexes in water or water/alcohol solutions [72]. This method was optimized in order to recover and reuse the aqueous solution of the catalyst after product extraction with pentane. The combination of chiral 1,2-bis(p-methoxyphenyl)-N,M -dimethylethylenediamine and triethyleneglycol monomethyl ether in methanol/water was shown to be the best method, with up to six runs with total acetophenone conversion and 65-68% ee. Only in the seventh run did the yield and the enantioselectivity decrease slightly. [Pg.184]

Much rarer than the inclusion of phenols is complex formation between alcohols and pyridinomacrocycles. In some combinations (selected macro-cycles and alcohols) complexes could be isolated (Weber and Vogtle, 1980). TTie hydrogen bond formation between pyridines and alcohols is the basis for an application, the additions of alcohols to ketenes catalysed by concave pyridines [13] (Liining et al., 1991b Schyja, 1995). [Pg.109]

For example, the same dimer complex which contains two molar equivalents of ethanol, underwent photoreaction to give a higher molecular weight polymer (M = 12 000). The formation of such inclusion complexes with the solvent is rather generally observed with similar types of dimers formed with alcohols and some other solvents and, consequently, this enhances photopolymerizability. Such complex formation with a solvent may be one of the promising techniques that can be used for diolehn compounds in order to obtain polymers with high molecular weights. [Pg.164]

Colors permitted generally quantum satis (E 101, E 140, E 160a, E 163) and colors with maximum inclusion levels for particular food categories (e.g., E 160d may not exceed 100 mg/1 in non-alcoholic flavored drinks)... [Pg.575]

Anthraquinone glycosides and aglycones can be readily separated on silica layers rising moderately polar developing solvents [41 3]. The best such solvents eonsist of ethyl acetate modified to increase polarity by the addition of alcohols or water for the glycosides or changed to decrease polarity by inclusion of hydrocarbon components. [Pg.344]

The inclusion of DMAP to the extent of 5-20 mol % in acylations by acid anhydrides and acyl chlorides increases acylation rates by up to four orders of magnitude and permits successful acylation of tertiary and other hindered alcohols. The reagent combination of an acid anhydride with MgBr2 and a hindered tertiary amine, e.g., ( -Pr)2NC2H5 or 1,2,2,6,6,-pentamethylpiperidine, gives an even more reactive acylation system, which is useful for hindered and sensitive alcohols.105... [Pg.244]

Surfactants used as lubricants are added to polymer resins to improve the flow characteristics of the plastic during processing they also stabilise the cells of polyurethane foams during the foaming process. Surfactants are either nonionic (e.g. fatty amides and alcohols), cationic, anionic (dominating class e.g. alkylbenzene sulfonates), zwitterionic, hetero-element or polymeric (e.g. EO-PO block copolymers). Fluorinated anionic surfactants or super surfactants enable a variety of surfaces normally regarded as difficult to wet. These include PE and PP any product required to wet the surface of these polymers will benefit from inclusion of fluorosurfactants. Surfactants are frequently multicomponent formulations, based on petro- or oleochemicals. [Pg.785]

The incorporation of certain excipients in products is deemed to be undesirable. Examples are the inclusion of mercurial preservatives, the inclusion of benzyl alcohol in parenteral products for use in children, the use of benzoic acid esters in injections, and the inclusion of sulfites and metabisulfites in products in general. If it is intended to use any of these materials, then a full justification will be required. [Pg.650]

Unfortunately, many clinical studies evaluating the efficacy of dietary supplements are flawed. Some of the flaws in the studies include non-randomization, being unblinded, lack of standardized products, small sample sizes, short treatment durations, and poorly defined inclusion and exclusion criteria. Many studies do not give detailed information about the dietary supplement used. When an herb is studied, the following information should be described plant species, part(s) used, product form (e.g., powdered crude herb, aqueous extract, ethanol extract, or aqueous alcohol extract) with stated proportions of water to alcohol, specifically extracted fractions, and quantities or concentrations used [48]. [Pg.739]


See other pages where Inclusion alcohol is mentioned: [Pg.2574]    [Pg.67]    [Pg.189]    [Pg.391]    [Pg.65]    [Pg.69]    [Pg.70]    [Pg.71]    [Pg.72]    [Pg.73]    [Pg.73]    [Pg.75]    [Pg.254]    [Pg.100]    [Pg.440]    [Pg.240]    [Pg.127]    [Pg.108]    [Pg.235]    [Pg.61]    [Pg.64]    [Pg.69]    [Pg.345]    [Pg.172]    [Pg.85]    [Pg.163]    [Pg.267]    [Pg.165]    [Pg.483]    [Pg.1065]    [Pg.1079]    [Pg.236]   
See also in sourсe #XX -- [ Pg.159 ]

See also in sourсe #XX -- [ Pg.99 ]




SEARCH



Acetylene alcohol compounds, inclusion

Alcohol inclusion complexes

Alcoholic solvents, inclusion

Inclusion compounds, with alcohols

© 2024 chempedia.info