Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Impurities importance

Water for use in homes, agriculture, and industry is generally obtained from freshwater lakes, rivers, or underground sources. The water you drink must be purified to remove solid particles, colloidal material, bacteria, and other harmful impurities. Important steps in a typical purification process include preliminary filtration, sedimentation, sand filtration, aeration, and sterilization (Figure 14.11). [Pg.596]

Carbon materials, especially with low thermal history, usually include some impurities. Heteroatoms also can be considered as impurities. Importantly, many results have reported that heteroatoms can be introduced into the carbon lattice intentionally, which is defined as doping [52,53], Doping... [Pg.479]

Surface creation and destruction—A rational basis for macroscopic treatment is essential for advanced applications in microelectronics, energy conversion and storage, electrocrystallization, and etching. These applications require improved precision, predictability, and freedom from trace impurities. Important topics include stability and evolution of surface texture and dendrites and the effect of electrochemical parameters on mechanical properties of the near-surface region. [Pg.115]

As the main responsible for the changes in the material balance, the chemical reactor must be modelled accurately from this point of view. Basic flowsheeting reactors are the plug flow reactor (PFR) and continuous stirred tank reactor (CSTR), as shown in Fig. 3.17. The ideal models are not sufficient to describe the complexity of industrial reactors. A practical alternative is the combination of ideal flow models with stoichiometric reactors, or with some user programming. In this way the flow reactors can take into account the influence of recycles on conversion, while the stoichiometric types can serve to describe realistically selectivity effects, namely the formation of impurities, important for separations. Some standard models are described below. [Pg.75]

The supersaturated metal droplet that is located on the tip of the growing whisker or short fiber sustains the directional growth of the localized solid phase. This continues to catalyze the reaction as long as an equilibrium is maintained between the diffusion of gaseous atoms or molecules from the vapor phase into the liquid phase and their subsequent extrusion as a solid whisker or short fiber. Growth stops if the catalyst is exhausted or sufficiently contaminated by impurities imported from the vapor phase. [Pg.13]

Unequivocal interpretation of the minor element effects using commercial FeCrAl materials is frequently difficult to derive because the alloys contain several reactive elements and a number of impurities, whereby their concentrations may vary between different alloy batches [8]. Therefore, within the framework of the EU-funded BRITE-EURAM progrannne LEAEA, a series of high purity model alloys were procured, whereby different minor elements were added in a systematic way to an FeCrAlY-base aUoy. The alloy compositions were selected to study the effects of single additions (impurities). Important data regarding the effects of P, V, Ca, Ti and Zr on the oxidation behaviour of FeCrAlY alloys were obtained with test times up to 27000 h, as reported elsewhere [9, 10]. In a further EU-funded programme, SMILER, the studies on the model alloys have been extended mainly to... [Pg.113]

The topic of spreading rates is of importance in the technology of the use of mono-layers for evaporation control (see Section IV-6) it is also important, in the opposite sense, in the lubrication of fine bearings, as in watches, where it is necessary that the small drop of oil remain in place and not be dissipated by spreading. Zisman and coworkers have found that spreading rates can be enhanced or reduced by the presence of small amounts of impurities in particular, strongly adsorbed surfactants can form a film over which the oil will not spread [48]. [Pg.111]

These effects can be illustrated more quantitatively. The drop in the magnitude of the potential of mica with increasing salt is illustrated in Fig. V-7 here yp is reduced in the immobile layer by ion adsorption and specific ion effects are evident. In Fig. V-8, the pH is potential determining and alters the electrophoretic mobility. Carbon blacks are industrially important materials having various acid-base surface impurities depending on their source and heat treatment. [Pg.190]

An important approach to the study of nucleation of solids is the investigation of small droplets of large molecular clusters. Years ago, Turnbull showed that by studying small droplets one could eliminate impurities in all except a few droplets and study homogeneous nucleation at significant undercoolings [13]. [Pg.336]

Several factors detennine how efficient impurity atoms will be in altering the electronic properties of a semiconductor. For example, the size of the band gap, the shape of the energy bands near the gap and the ability of the valence electrons to screen the impurity atom are all important. The process of adding controlled impurity atoms to semiconductors is called doping. The ability to produce well defined doping levels in semiconductors is one reason for the revolutionary developments in the construction of solid-state electronic devices. [Pg.115]

In practice, sedimentation is an important property of colloidal suspensions. In fonnulated products, sedimentation tends to be a problem and some products are shipped in the fonn of weak gels, to prevent settling. On the other hand, in applications such as water clarification, a rapid sedimentation of impurities is desirable. [Pg.2674]

In n type semiconductors, electrons are tire majority carriers. Holes will also be present tlirough accidental incoriioration of acceptor impurities or, more importantly, tlirough tlie intentional creation of electron-hole pairs. Holes in n type and electrons in p type semiconductors are minority carriers. [Pg.2883]

However, most impurities and defects are Jalm-Teller unstable at high-symmetry sites or/and react covalently with the host crystal much more strongly than interstitial copper. The latter is obviously the case for substitutional impurities, but also for interstitials such as O (which sits at a relaxed, puckered bond-centred site in Si), H (which bridges a host atom-host atom bond in many semiconductors) or the self-interstitial (which often fonns more exotic stmctures such as the split-(l lO) configuration). Such point defects migrate by breaking and re-fonning bonds with their host, and phonons play an important role in such processes. [Pg.2888]

Materials that contain defects and impurities can exhibit some of the most scientifically interesting and economically important phenomena known. The nature of disorder in solids is a vast subject and so our discussion will necessarily be limited. The smallest degree of disorder that can be introduced into a perfect crystal is a point defect. Three common types of point defect are vacancies, interstitials and substitutionals. Vacancies form when an atom is missing from its expected lattice site. A common example is the Schottky defect, which is typically formed when one cation and one anion are removed from fhe bulk and placed on the surface. Schottky defects are common in the alkali halides. Interstitials are due to the presence of an atom in a location that is usually unoccupied. A... [Pg.638]

The most direct effect of defects on tire properties of a material usually derive from altered ionic conductivity and diffusion properties. So-called superionic conductors materials which have an ionic conductivity comparable to that of molten salts. This h conductivity is due to the presence of defects, which can be introduced thermally or the presence of impurities. Diffusion affects important processes such as corrosion z catalysis. The specific heat capacity is also affected near the melting temperature the h capacity of a defective material is higher than for the equivalent ideal crystal. This refle the fact that the creation of defects is enthalpically unfavourable but is more than comp sated for by the increase in entropy, so leading to an overall decrease in the free energy... [Pg.639]

Never found free in nature, it is widely distributed in combination with minerals. Phosphate rock, which contains the mineral apatite, an impure tri-calcium phosphate, is an important source of the element. Large deposits are found in Russia, in Morocco, and in Florida, Tennessee, Utah, Idaho, and elsewhere. [Pg.36]

The element is a gray-white metalloid. In its pure state, the element is crystalline and brittle, retaining its luster in air at room temperature. It is a very important semiconductor material. Zone-refining techniques have led to production of crystalline germanium for semiconductor use with an impurity of only one part in lOio. [Pg.93]

Cerium is a component of misch metal, which is extensively used in the manufacture of pyrophoric alloys for cigarette lighters. While cerium is not radioactive, the impure commercial grade may contain traces of thorium, which is radioactive. The oxide is an important constituent of incandescent gas mantles and is emerging as a hydrocarbon catalyst in self cleaning ovens. In this application it can be incorporated into oven walls to prevent the collection of cooking residues. [Pg.173]

Faradaic currents due to impurities can usually be minimized by carefully preparing the sample. For example, one important impurity is dissolved O2, which is reduced first to H2O2 and then to H2O. Dissolved O2 is removed by bubbling an inert gas such as N2 through the sample before the analysis. [Pg.521]

Suitable inlets commonly used for liquids or solutions can be separated into three major classes, two of which are discussed in Parts A and C (Chapters 15 and 17). The most common method of introducing the solutions uses the nebulizer/desolvation inlet discussed here. For greater detail on types and operation of nebulizers, refer to Chapter 19. Note that, for all samples that have been previously dissolved in a liquid (dissolution of sample in acid, alkali, or solvent), it is important that high-purity liquids be used if cross-contamination of sample is to be avoided. Once the liquid has been vaporized prior to introduction of residual sample into the plasma flame, any nonvolatile impurities in the liquid will have been mixed with the sample itself, and these impurities will appear in the results of analysis. The problem can be partially circumvented by use of blanks, viz., the separate examination of levels of residues left by solvents in the absence of any sample. [Pg.104]

The steps (reactions) by which normal ions fragment are important pieces of information that are lacking in a normal mass spectrum. These fragmentation reactions can be deduced by observations on metastable ions to obtain important data on molecular structure, the complexities of mixtures, and the presence of trace impurities. [Pg.231]

Point-of-Use Purification. For the user of cylinder quantities of reactive specialty gases, there are only a limited number of ways to remove impurities and obtain high purity. Specialized point-of-use purifiers have been developed that purify small streams of many important reactive gases. Whereas these point-of-use purifiers cannot remove all important impurities, they are usually effective for removing the contamination added by the users gas distribution system, mostly air and moisture. [Pg.89]

Corundum. Comndum [1302-75-5] (see Aluminum compounds) is a naturally occurring massive crystalline mineral composed of aluminum oxide. It is an impure form of the gems mby and sapphke. Prior to 1900 comndum was an important abrasive for the production of grinding wheels. Today it is mainly employed as a loose abrasive for grinding and polishing optical lenses. Almost all the world s supply of comndum now comes from Africa, primarily from Zimbabwe. [Pg.10]

Quality Specifications. Because of the extreme sensitivity of polyamide synthesis to impurities ia the iagredients (eg, for molecular-weight control, dye receptivity), adipic acid is one of the purest materials produced on a large scale. In addition to food-additive and polyamide specifications, other special requirements arise from the variety of other appHcations. Table 8 summarizes the more important specifications. Typical impurities iaclude monobasic acids arising from the air oxidation step ia synthesis, and lower dibasic acids and nitrogenous materials from the nitric acid oxidation step. Trace metals, water, color, and oils round out the usual specification Hsts. [Pg.246]

MetaUic ions are precipitated as their hydroxides from aqueous caustic solutions. The reactions of importance in chlor—alkali operations are removal of magnesium as Mg(OH)2 during primary purification and of other impurities for pollution control. Organic acids react with NaOH to form soluble salts. Saponification of esters to form the organic acid salt and an alcohol and internal coupling reactions involve NaOH, as exemplified by reaction with triglycerides to form soap and glycerol,... [Pg.514]


See other pages where Impurities importance is mentioned: [Pg.312]    [Pg.174]    [Pg.92]    [Pg.143]    [Pg.194]    [Pg.312]    [Pg.174]    [Pg.92]    [Pg.143]    [Pg.194]    [Pg.24]    [Pg.52]    [Pg.81]    [Pg.363]    [Pg.395]    [Pg.2417]    [Pg.2888]    [Pg.2926]    [Pg.51]    [Pg.126]    [Pg.67]    [Pg.64]    [Pg.276]    [Pg.88]    [Pg.89]    [Pg.90]    [Pg.182]    [Pg.251]    [Pg.361]    [Pg.443]    [Pg.446]   
See also in sourсe #XX -- [ Pg.90 , Pg.142 , Pg.179 , Pg.216 ]




SEARCH



© 2024 chempedia.info