Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Extraction immiscible solvents

In liquid-liquid extraction (LLE), phases A and B are both liquids. The two liquid phases must be immiscible. For that reason, LLE has also been referred to as immiscible solvent extraction. In practice, one phase is usually aqueous while the other phase is an organic solvent. An extraction can be accomplished if the analyte has favorable solubility in the organic solvent. Chemists have used organic solvents for extracting substances from water since the early nineteenth century [38]. [Pg.57]

Anthony, D. H. J., R. S. Tobin, Immiscible solvent extraction scheme for biodegradation testing of polyethoxylate nonionic surfactants. Anal. Chem., 1977, 49, 398 401. [Pg.189]

The theory of the process can best be illustrated by considering the operation, frequently carried out in the laboratory, of extracting an orgaiuc compound from its aqueous solution with an immiscible solvent. We are concerned here with the distribution law or partition law which, states that if to a system of two liquid layers, made up of two immiscible or slightly miscible components, is added a quantity of a third substance soluble in both layers, then the substance distributes itself between the two layers so that the ratio of the concentration in one solvent to the concentration in the second solvent remains constant at constant temperature. It is assumed that the molecular state of the substance is the same in both solvents. If and Cg are the concentrations in the layers A and B, then, at constant temperature ... [Pg.44]

The above considerations apply also to the removal of a soluble impurity by extraction (or washing) with an immiscible solvent. Several washings with portions of the solvent give better results than a single washing with the total volume of the solvent. [Pg.45]

The principle of solvent extraction in refining is as follows when a dilute aqueous metal solution is contacted with a suitable extractant, often an amine or oxime, dissolved in a water-immiscible organic solvent, the metal ion is complexed by the extractant and becomes preferentially soluble in the organic phase. The organic and aqueous phases are then separated. By adding another aqueous component, the metal ions can be stripped back into the aqueous phase and hence recovered. Upon the identification of suitable extractants, and using a multistage process, solvent extraction can be used to extract individual metals from a mixture. [Pg.168]

The extraction of metal ions depends on the chelating ability of 8-hydroxyquinoline. Modification of the stmcture can improve its properties, eg, higher solubility in organic solvents (91). The extraction of nickel, cobalt, copper, and zinc from acid sulfates has been accompHshed using 8-hydroxyquinohne in an immiscible solvent (92). In the presence of oximes, halo-substituted 8-hydroxyquinolines have been used to recover copper and zinc from aqueous solutions (93). Dilute solutions of heavy metals such as mercury, ca dmium, copper, lead, and zinc can be purified using quinoline-8-carboxyhc acid adsorbed on various substrates (94). [Pg.393]

Sedimentation is also used for other purposes. For example, relative motion of particles and Hquid iacreases the mass-transfer coefficient. This motion is particularly useful ia solvent extraction ia immiscible Hquid—Hquid systems (see Extraction, liquid-liquid). An important commercial use of sedimentation is ia continuous countercurrent washing, where a series of continuous thickeners is used ia a countercurrent mode ia conjunction with reslurrying to remove mother liquor or to wash soluble substances from the soHds. Most appHcations of sedimentation are, however, ia straight sohd—Hquid separation. [Pg.316]

A beryUium concentrate is produced from the leach solution by the counter-current solvent extraction process (10). Kerosene [8008-20-6] containing di(2-ethylhexyl)phosphate [298-07-7] is the water-immiscible beryUium extractant. The slow extraction of beryUium at room temperature is accelerated by warming. The raffinate from the solvent extraction contains most of the aluminum and aU of the magnesium contained in the leach solution. [Pg.66]

If a neutral chelate formed from a ligand such as acetylacetone is sufficiently soluble in water not to precipitate, it may stiH be extracted into an immiscible solvent and thus separated from the other constituents of the water phase. Metal recovery processes (see Mineral recovery and processing), such as from dilute leach dump Hquors, and analytical procedures are based on this phase-transfer process, as with precipitation. Solvent extraction theory and many separation systems have been reviewed (42). [Pg.393]

Liquid-liquid extraction is a process for separating components in solution by their distribution between two immiscible liquid phases. Such a process can also be simply referred to as liquid extraction or solvent extraction however, the latter term may be confusing because it also applies to the leaching of a soluble substance from a solid. [Pg.1448]

An equihbrium, or theoretical, stage in liquid-liquid extraction as defined earlier is routinely utilized in laboratory procedures. A feed solution is contacted with an immiscible solvent to remove one or more of the solutes from the feed. This can be carried out in a separating funnel, or, preferably, in an agitated vessel that can produce droplets of about 1 mm in diameter. After agitation has stopped and the phases separate, the two clear liquid layers are isolated by decantation. [Pg.1460]

Robbins ( Oquid-Liquid Extraction, in Schweitzer, Handbook of Separation Techniques for Chemical Engineers, McGraw-Hill, New York, 1979, sec. 1.9) reported that most liquid-liquid extrac tion systems can be treated as having either (A) immiscible solvents, (B) partially miscible solvents with a low solute concentration in the extract, or (C) partially miscible solvents with a high solute concentration in the extract. [Pg.1461]

When the distribution ratio is low, continuous methods of extraction are used. This procedure makes use of a continuous flow of immiscible solvent through the solution if the solvent is volatile, it is recycled by distillation and condensation and is dispersed in the aqueous phase by means of a sintered glass disc or equivalent device. Apparatus is available for effecting such continuous extractions with automatic return of the volatilised solvent (see the Bibliography, Section 9.10). [Pg.173]

In a two-phase system (Figure 2.5c), the organic (water immiscible) solvent may be used as product extractant. In addition, recirculation of the organic phase can serve to transfer oxygen and to mix the aqueous phase. [Pg.32]

If an aqueous solution of a compound is shaken with another liquid that is immiscible (mutually insoluble) with water, some of the compound may dissolve in the other solvent. For example, molecular iodine, I>, is very slightly soluble in water but is highly soluble in tetrachloromethane, CC14, which is immiscible with water. When tetrachloromethane is added to water containing iodine, most of the iodine dissolves in the CC14. The solute is said to partition itself between the two solvents. Solvent extraction is used to obtain plant flavors and aromas from aqueous slurries of the plant that have been crushed in a blender. [Pg.475]

Since droplet formation is a particular problem with aqueous mobile phases, continuous post-column solvent extraction, in which the solutes are extracted into an immiscible organic mobile phase, has been proposed [4]. The mobile phase reaching the belt thus becomes totally organic in nature and much more easily removed. The major disadvantage of this approach is the possible loss of analyte during the extraction procedure. [Pg.138]

In conventional solvent extraction, a solute is partitioned between two immiscible solvents. Here, used as an... [Pg.170]

Dried or freeze dried samples can be extracted with water-immiscible solvents such as EtOAc or diethyl ether. For quantitative extraction, dried samples are preferably rehydrated at different times for example, 5 to 10 min for dried mangoes, 30 min for lyophihzed red peppers and pasta. Rehydration is followed by extraction with acetone or MeOH. Bixin and norbixin from a mix dry powder of annatto and com can quantitatively be extracted with MeOH followed by acetone. In order to improve pigment recovery, extruded foods require pre-digestion with enzymes to liberate the pigment from the matrix. ... [Pg.450]

The concept of extractive reaction, which was conceived over 40 years ago, has connections with acid hydrolysis of pentosans in an aqueous medium to give furfural, which readily polymerizes in the presence of an acid. The use of a water-immiscible solvent, such as tetralin allows the labile furfural to be extracted and thus prevents polymerization, increases the yield, and improves the recovery procedures. In the recent past an interesting and useful method has been suggested by Rivalier et al. (1995) for acid-catalysed dehydration of hexoses to 5-hydroxy methyl furfural. Here, a new solid-liquid-liquid extractor reactor has been suggested with zeolites in protonic form like H-Y-faujasite, H-mordenite, H-beta, and H-ZSM-5, in suspension in the aqueous phase and with simultaneous extraction of the intermediate product with a solvent, like methyl Aobutyl ketone, circulating countercurrently. [Pg.144]

Liquid-liquid extraction (also called solvent extraction) is the transfer of a substance (a consolute) dissolved in one liquid to a second liquid (the solvent) that is immiscible with the first liquid or miscible to a very limited degree. This operation is commonly used in fine chemicals manufacture (I) to wash out impurities from a contaminated solution to a solvent in order to obtain a pure solution (raffinate) from which the pure substance will be isolated, and (2) to pull out a desired substance from a contaminated liquid into the solvent leaving impurities in the first liquid. The former operation is typically employed when an organic phase is to be depleted from impurities which are soluble in acidic, alkaline, or neutral aqueous solutions Water or a diluted aqueous solution is then used as the solvent. The pure raffinate is then appropriately processed (e.g. by distillation) to isolate the desired consolute. In the latter version of extraction impurities remain in the first phase. The extract that has become rich in the desired consolute is then appropriately processed to isolate the consolute. Extraction can also be used to fractionate multiple consolutes. [Pg.252]

In almost all theoretical studies of AGf , it is postulated or tacitly understood that when an ion is transferred across the 0/W interface, it strips off solvated molecules completely, and hence the crystal ionic radius is usually employed for the calculation of AGfr°. Although Abraham and Liszi [17], in considering the transfer between mutually saturated solvents, were aware of the effects of hydration of ions in organic solvents in which water is quite soluble (e.g., 1-octanol, 1-pentanol, and methylisobutyl ketone), they concluded that in solvents such as NB andl,2-DCE, the solubility of water is rather small and most ions in the water-saturated solvent exist as unhydrated entities. However, even a water-immiscible organic solvent such as NB dissolves a considerable amount of water (e.g., ca. 170mM H2O in NB). In such a medium, hydrophilic ions such as Li, Na, Ca, Ba, CH, and Br are selectively solvated by water. This phenomenon has become apparent since at least 1968 by solvent extraction studies with the Karl-Fischer method [35 5]. Rais et al. [35] and Iwachido and coworkers [36-39] determined hydration numbers, i.e., the number of coextracted water molecules, for alkali and alkaline earth metal... [Pg.49]

The liquid-liquid interface is not only a boundary plane dividing two immiscible liquid phases, but also a nanoscaled, very thin liquid layer where properties such as cohesive energy, density, electrical potential, dielectric constant, and viscosity are drastically changed along with the axis from one phase to another. The interfacial region was anticipated to cause various specific chemical phenomena not found in bulk liquid phases. The chemical reactions at liquid-liquid interfaces have traditionally been less understood than those at liquid-solid or gas-liquid interfaces, much less than the bulk phases. These circumstances were mainly due to the lack of experimental methods which could measure the amount of adsorbed chemical species and the rate of chemical reaction at the interface [1,2]. Several experimental methods have recently been invented in the field of solvent extraction [3], which have made a significant breakthrough in the study of interfacial reactions. [Pg.361]

Solvent Extraction Aqueous sample is partitioned with an immiscible organic solvent. Extraction efficiency depends on the affinity of the solute for the organic solvent. All sample types Samples with a high affinity for water are not extracted. Extractions can be performed by a simple single equilibration or by multiple equilibrations with fresh solvent. Solvent impurities concentrated along with sample. [Pg.376]


See other pages where Extraction immiscible solvents is mentioned: [Pg.26]    [Pg.379]    [Pg.176]    [Pg.564]    [Pg.24]    [Pg.24]    [Pg.2137]    [Pg.2143]    [Pg.6]    [Pg.599]    [Pg.323]    [Pg.554]    [Pg.761]    [Pg.204]    [Pg.217]    [Pg.401]    [Pg.195]    [Pg.115]    [Pg.463]    [Pg.614]    [Pg.418]    [Pg.1153]    [Pg.332]    [Pg.370]   
See also in sourсe #XX -- [ Pg.57 ]




SEARCH



Immiscibility

Immiscibility Immiscible

Immiscible

Immiscible extraction

Solvent extraction immiscible solvents

Solvent extraction immiscible solvents

© 2024 chempedia.info