Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrolysis of acetylcholine

Mode of Action. All of the insecticidal carbamates are cholinergic, and poisoned insects and mammals exhibit violent convulsions and other neuromuscular disturbances. The insecticides are strong carbamylating inhibitors of acetylcholinesterase and may also have a direct action on the acetylcholine receptors because of their pronounced stmctural resemblance to acetylcholine. The overall mechanism for carbamate interaction with acetylcholinesterase is analogous to the normal three-step hydrolysis of acetylcholine however, is much slower than with the acetylated enzyme. [Pg.293]

Acetylcholine serves as a neurotransmitter. Removal of acetylcholine within the time limits of the synaptic transmission is accomplished by acetylcholinesterase (AChE). The time required for hydrolysis of acetylcholine at the neuromuscular junction is less than a millisecond (turnover time is 150 ps) such that one molecule of AChE can hydrolyze 6 105 acetylcholine molecules per minute. The Km of AChE for acetylcholine is approximately 50-100 pM. AChE is one of the most efficient enzymes known. It works at a rate close to catalytic perfection where substrate diffusion becomes rate limiting. AChE is expressed in cholinergic neurons and muscle cells where it is found attached to the outer surface of the cell membrane. [Pg.12]

Absorbance- and reflectance-based measurements are widespread, as there are many enzymatic reaction products or intermediates that are colored or if not, can react with the appropriate indicator. Sensors using acetylcholinesterase for carbamate pesticides detection are an example of indirect optical fiber biosensors. This enzyme catalyses the hydrolysis of acetylcholine with concomitant decrease in pH41 ... [Pg.349]

The effect of Li+ upon the synthesis and release of acetylcholine in the brain is equivocal Li+ is reported to both inhibit and stimulate the synthesis of acetylcholine (reviewed by Wood et al. [162]). Li+ appears to have no effect on acetyl cholinesterase, the enzyme which catalyzes the hydrolysis of acetylcholine [163]. It has also been observed that the number of acetylcholine receptors in skeletal muscle is decreased by Li+ [164]. In the erythrocytes of patients on Li+, the concentration of choline is at least 10-fold higher than normal and the transport of choline is reduced [165] the effect of Li+ on choline transport in other cells is not known. A Li+-induced inhibition of either choline transport and/or the synthesis of acetylcholine could be responsible for the observed accumulation of choline in erythrocytes. This choline is probably derived from membrane phosphatidylcholine which is reportedly decreased in patients on Li+ [166],... [Pg.30]

There is some confusion in the literature regarding the substances designated as anti-choline-esterases (usually shortened to anticholinesterases). The term cholinesterase was first used1 in connexion with an enzyme present in the blood serum of the horse which catalysed the hydrolysis of acetylcholine and of butyrylcholine, but exhibited little activity towards methyl butyrate,... [Pg.72]

Thus a distinction was provided between simple esterases, such as fiver esterase, which catalysed the hydrolysis of simple aliphatic esters but were ineffective towards choline esters. The term 1 cholinesterase was extended to other enzymes, present in blood sera and erythrocytes of other animals, including man, and in nervous tissue, which catalysed the hydrolysis of acetylcholine. It was assumed that only one enzyme was involved until Alles and Hawes2 found that the enzyme present in human erythrocytes readily catalysed the hydrolysis of acetylcholine, but was inactive towards butyrylcholine. Human-serum enzyme, on the other hand, hydrolyses butyrylcholine more rapidly than acetylcholine. The erythrocyte enzyme is sometimes called true cholinesterase, whereas the serum enzyme is sometimes called pseudo-cholinesterase. Stedman,3 however, prefers the names a-cholinesterase for the enzyme more active towards acetylcholine, and / -cholinesterase for the one preferentially hydrolysing butyrylcholine. Enzymes of the first type play a fundamental part in acetylcholine metabolism in vivo. The function of the second type in vivo is obscure. Not everyone agrees with the designation suggested by Stedman. It must also be stressed that enzymes of one type from different species are not always identical in every respect.4 Furthermore,... [Pg.72]

This enzyme [EC 3.1.1.7], also known as true cholinesterase, choline esterase I, and cholinesterase, catalyzes the hydrolysis of acetylcholine to produce choline and acetate. The enzyme will also act on a number of acetate esters as well as catalyze some transacetylations. [Pg.8]

Reversible cholinesterase inhibitors form a transition state complex with the enzyme, just as acetylcholine does. These compounds are in competition with acetylcholine in binding with the active sites of the enzyme. The chemical stracture of classic, reversible inhibitors physostigmine and neostigmine shows their similarity to acetylcholine. Edrophonium is also a reversible inhibitor. These compounds have a high affinity with the enzyme, and their inhibitory action is reversible. These inhibitors differ from acetylcholine in that they are not easily broken down by enzymes. Enzymes are reactivated much slower than it takes for subsequent hydrolysis of acetylcholine to happen. Therefore, the pharmacological effect caused by these compounds is reversible. [Pg.187]

Drags that exhibit central anticholinergic properties are used in treating Parkinsonism. It is believed that they do not affect the synthesis, release, or hydrolysis of acetylcholine. Their medicinal efficacy is manifest by the rednction or removal of motor disturbances cansed by damage to the extrapyramidal system. They reduce rigidity, and to a somewhat lesser degree, akinesia, and they have little effect on tremors. [Pg.202]

The inhibitors of the acetylcholine esterase reduce the rate of hydrolysis of acetylcholine since they... [Pg.294]

The interactions between transmitters and their receptors are readily reversible, and the number of transmitter-receptor complexes formed is a direct function of the amount of transmitter in the biophase. The length of time that intact molecules of acetylcholine remain in the biophase is short because acetylcholinesterase, an enzyme that rapidly hydrolyzes acetylcholine, is highly concentrated on the outer surfaces of both the prejunctional (neuronal) and postjunctional (effector cell) membranes. A rapid hydrolysis of acetylcholine by the enzyme results in a lowering of the concentration of free transmitter and a rapid dissociation of the transmitter from its receptors little or no acetylcholine escapes into the circulation. Any acetylcholine that does reach the circulation is immediately inactivated by plasma esterases. [Pg.89]

The first suggestion of a practical form of antidotal therapy came in 1949 from Hestrin, who found that acetylcholinesterase (AChE) catalyzed the formation of acetohydroxamlc acid when incubated with sodium acetate and hydroxylamine. Critical in vitro studies in the next decade led to the development of a practical approach to therapy. The crucial concept in these studies was the recognition that the compound formed when AChE reacted with a phosphorus ester was a covalent phosphoryl-enzyme Intermediate similar to that formed in the hydrolysis of acetylcholine. 3 Wilson and colleagues, beginning in 1951, demonstrated that AChE inhibited by alkyl phosphate esters (tetraethyl pyrophosphate, TEPP) could be reactivated by water, but that free enzyme formed much more rapidly in the presence of hydroxylamine. 0 21 Similar results... [Pg.336]

Cholinesterase inhibitors cross the blood-brain barrier and decrease enzymatic hydrolysis of acetylcholine in the synaptic cleft, thereby increasing acetylcholine availability for neurotransmission. The rationale for using cholinergic agents to treat Alzheimer s disease stems from evidence of decreased cerebral choline acetyltrans-ferase (the enzyme responsible for acetylcholine synthesis) and cholinergic neuron loss in the nucleus basalis of Meynert, which correlate with plaque formation and cognitive impairment (Arendt et al. 1985 Davies and Maloney 1976 Etienne et al. 1986 Perry et al. 1978b). [Pg.201]

Scheme 3.7 (a) Hydrolysis of acetylcholine by acetylcholinesterase (AChE) and (b) inhibition of... [Pg.64]

Figure 7.48 Mechanism of hydrolysis of acetylcholine by acetylcholinesterase (A) and the analogous reaction with malaoxon leading to blockade (=) of the enzyme. Figure 7.48 Mechanism of hydrolysis of acetylcholine by acetylcholinesterase (A) and the analogous reaction with malaoxon leading to blockade (=) of the enzyme.
Figure 11.5 Hydrolysis of acetylcholine by the enzyme acetylcholinesterase and its inhibition by toxicants such as organophosphorus and carbamate insecticides. Figure 11.5 Hydrolysis of acetylcholine by the enzyme acetylcholinesterase and its inhibition by toxicants such as organophosphorus and carbamate insecticides.
The base hydrolysis of acetylcholine can be conveniently followed by monitoring the drop in pH with time. [Pg.41]

When SO is added to the reaction mixture for the acid-catalysed hydrolysis of acetylcholine, (CH3)3N+CH2CH20COCH3 (HE+), with H30+, added catalysis is observed. This can be interpreted as anion-catalysed hydrolysis by SO4-, or as general acid catalysis by HSO4. Predict the effect of ionic strength on the rate constants describing each mechanism, and comment on the result. Does this represent a means of distinguishing between the two mechanisms ... [Pg.314]

Figure 8.6 Graph of kobs versus [SO42 ], showing the catalytic effect of added sulphate in the acid hydrolysis of acetylcholine... Figure 8.6 Graph of kobs versus [SO42 ], showing the catalytic effect of added sulphate in the acid hydrolysis of acetylcholine...
Acetylcholine is a neurotransmitter, a key substance involved with transmission of nerve impulses in the brain, skeletal muscles, and other areas where nerve impulses occur. An essential step in the proper function of any nerve impulse is its cessation (see Figure 6.9), which requires hydrolysis of acetylcholine as shown by Reaction 6.10.1. Some xenobiotics, such as organophosphate compounds (see Chapter 18) and carbamates (see Chapter 15) inhibit acetylcholinesterase, with the result that acetylcholine accumulates and nerves are overstimulated. Adverse effects may occur in the central nervous system, in the autonomic nervous system, and at neuromuscular junctions. Convulsions, paralysis, and finally death may result. [Pg.149]

Unlike the acetate ester, the phosphate ester is not readily hydrolyzed off the enzyme. Therefore, the enzyme can no longer catalyze the hydrolysis of acetylcholine, and the muscle remains paralyzed. Paralysis of the muscles that are involved in breathing results quickly in asphyxiation and death. [Pg.839]

A fluorimetric assay method for the determination of acetylcholine with picomole sensitivity was reported by MacDonald [44]. The method is based on the hydrolysis of acetylcholine to choline and acetate, catalyzed in the presence of acetylcholineesterase, oxidation of choline to betaine, and H202 in the presence of choline oxidase, and oxidation of 4-hydroxyphenylacetic acid by H202 to a fluorescent product, catalyzed by peroxidase. The interference in the analysis of brain homogenates was discussed. [Pg.71]

The enzymatic radioassay method for the analysis of acetylcholine and choline in brain tissue has been reported by Reid et al. [210]. The method describes the determination of nanogram amounts of acetylcholine and choline in as little as 10 mg of brain tissue, involves isolation of acetylcholine by high-voltage paper electrophoresis, alkaline hydrolysis of acetylcholine to choline, and conversion of this into [32P]-phosphoryl choline in the presence of choline kinase and [y32P] ATP. The labeled derivative is isolated by column chromatography on Bio-Rad AG1-X8 resin, using Tris buffer solution as the eluent. Cerenkov radiation from 32P is counted (at 33% efficiency) in a liquid scintillation spectrometer. The amount of phosphorylcholine is proportional to the amount of choline over the range of 0.08-8.25 nmol. [Pg.102]

Ladinsky and Consolo used an enzymatic radioassay method for the determination of acetylcholine and choline [218], The method was based on the electrophoretic separation of acetylcholine and choline, hydrolysis of acetylcholine to form choline, and acetylation of the choline with labeled AcCoA and choline acetyltransferase. The labeled acetylcholine formed was isolated and quantitated. The method was sensitive and specific, and permitted the routine handling of a large number of samples in a single experiment. The standard curves were linear up to at least 42.5 ng (0.4 nmol) choline and 45 ng (0.3 nmol) acetylcholine. The lower limit of sensitivity was 2ng, and the recovery of acetylcholine was 95% when carried through the entire procedure. [Pg.104]

Neurotransmitters are removed by translocation into vesicles or destroyed in enzyme-catalysed reactions. Acetylcholine must be removed from the synaptic cleft to permit repolarization and relaxation. A high affinity acetylcholinesterase (AChE) (the true or specific AChE) catalyses the hydrolysis of acetylcholine to acetate and choline. A plasma AChE (pseudo-AChE or non-specific AChE) also hydrolyses acetylcholine. A variety of plant-derived substances inhibit AChE and there is considerable interest in AChE inhibitors as potential therapies for cognition enhancement and for Alzheimer s disease. Organophosphorous compounds alkylate an active site serine on AChE and the AChE inhibition by this mechanism is the basis for the use of such compounds as insecticides (and unfortunately also as chemical warfare agents). Other synthetics with insecticidal and medical applications carbamoylate and thus inactivate AChE (Table 6.4). [Pg.233]

Cholinesterases, e.g., acetylcholinesterase (AChE, EC 3.1.1.7) and butyrylcholi-nesterase (BChE, EC 3.1.1.8), are serine hydrolases that break down the neurotransmitter acetylcholine and other choline esters [5]. In the neurotransmission processes at the neuromuscular junction, the cationic neurotransmitter acetylcholine (ACh) is released from the presynaptic nerve, diffuses across the synapse and binds to the ACh receptor in the postsynaptic nerve (Fig. 1). Acetylcholinesterase is located between the synaptic nerves and functions as the terminator of impulse transmissions by hydrolysis of acetylcholine to acetic acid and choline as shown in Scheme 4. The process is very efficient, and the hydrolysis rate is close to diffusion controlled [6, 7]. [Pg.59]

The wide use of cholinesterase inhibitors in various spheres of human activities and the risk of acute and chronic intoxications associated with this process prompted investigation of the role of acetylcholinesterase (AChE) and nonspecific esterases in the immunotropic effects of these chemicals. They irreversibly bind to AChE that normally catalyzes the hydrolysis of acetylcholine (ACh) at the... [Pg.600]

Comparison with AChE-Catalyzed Hydrolysis of Acetylcholine. 143... [Pg.107]


See other pages where Hydrolysis of acetylcholine is mentioned: [Pg.33]    [Pg.102]    [Pg.203]    [Pg.80]    [Pg.199]    [Pg.129]    [Pg.138]    [Pg.174]    [Pg.63]    [Pg.42]    [Pg.134]    [Pg.42]    [Pg.839]    [Pg.310]    [Pg.149]    [Pg.60]    [Pg.110]    [Pg.143]    [Pg.146]    [Pg.926]   
See also in sourсe #XX -- [ Pg.282 ]




SEARCH



Acetylcholine hydrolysis

Problem Hydrolysis of Acetylcholine

© 2024 chempedia.info