Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrochloric acid, composition solutions

Hydrogen Chloride—Water System. Hydrogen chloride is highly soluble in water and this aqueous solution does not obey Henry s law at ah concentrations. Solubhity data are summarized in Table 5. The relationship between the pressure and vapor composition of unsaturated aqueous hydrochloric acid solutions is given in Reference 12. The vapor—Hquid equiHbria for the water—hydrogen chloride system at pressures up to 1632 kPa and at temperatures ranging from —10 to +70° C are documented in Reference 13. [Pg.439]

To produce a moulding composition, aniline is first treated with hydrochloric acid to produce water-soluble aniline hydrochloride. The aniline hydrochloride solution is then run into a large wooden vat and formaldehyde solution is run in at a slow but uniform rate, the whole mix being subject to continuous agitation. Reaction occurs immediately to give a deep orange-red product. The resin is still a water-soluble material and so it is fed into a 10% caustic soda solution to react with the hydrochloride, thus releasing the resin as a creamy yellow slurry. The slurry is washed with a counter-current of fresh water, dried and ball-milled. [Pg.690]

This alloy has a nominal composition of 65% nickel, 28% molybdenum and 6% iron. It is generally used in reducing conditions. It is intended to work in very severely corrosive situations after post-weld heat treatment to prevent intergranular corrosion. These alloys have outstanding resistance to all concentrations of hydrochloric acid up to boiling-point temperatures and in boiling sulfuric acid solutions up to 60% concentration. [Pg.75]

Note Tertiary amines and quaternary ammonium compounds yield stronger colors than primary amines [25]. The dipping solution can also be used as spray solution [44]. Other reagent compositions have also been reported in the literature (1, 3, 6, 12, 13, 15, 18, 21, 23, 41] In some cases the reagents have been made up in acetone [38, 39], methanol [14] or ethanol [37] and/or acidified with hydrochloric acid [3, 33, 37-40]. The concentrations of hexachloroplatinic(IV) acid have been in the range of 0.05 -0.4 those of potassium iodide between 0.5 and 24spray solution containing 2% potassium iodide and 0.23170 hexachloroplatinic(IV) acid hexahydrate in N-hydro-chloric acid is reported to yield the best coloration results with respect to detection sensitivity and color differentiation in the detection of morphine, codeine, quinine, methadone and cocaine [46]. Acidic reagent solutions have been recommended for benzodiazepines [10, 11]. Sulfones do not react [39]. [Pg.188]

In very dilute HCl solutions, specifically those with a pH above 5-48, the 4 1 5 phase was found to be insoluble. By contrast, addition of concentrated HCl to the 4 1 5 phase was shown to lead to formation of the 1 1 2 phase (Sorrell, 1977). Below 35wt% HCl, the 4 1 5 phase was found to dissolve congruently. Since the 1 1 2 phase was also found to dissolve congruently in hydrochloric acid solutions with concentrations above 23 wt %, it follows that there is a range of concentrations over which both phases are soluble in aqueous HCl. This behaviour explains why the zinc oxychlorides have proved to be unsatisfactory in attempts to use them as dental cements. The preparation of such cements from concentrated aqueous solutions of ZnClj results in the formation either of the 1 1 2 phase alone or of mixtures of the 4 1 5 and 1 1 2 phases, neither of which is stable in the presence of water. Preparing dental cements from less concentrated solutions also results in the formation of mixed phases, unless the bulk composition has excessive amounts of ZnO present. In these latter cases the cement stability is acceptable but it lacks both a workable consistency and a reasonable working time. [Pg.289]

Y. A. Balakirov, A. I. Chemorubashkin, G. A. Makeev, I. P. Korolev, and V. N. Glushchenko. Composition for treatment of stratum head zone—contains oxyethylated isononyl phenol, aqueous solution of hydrofluoric acid and aqueous solution of hydrochloric acid. Patent SU 1770555-A, 1992. [Pg.354]

Tetraethoxysilane-water-alcohol-hydrochloric acid solutions of appropriate compositions become viscous and spinnable in the course of hydrolysis and condensation of SiCCX Hs). Fig.l shows the time change of the viscosity of a Si(0C2H5)4 solution with the [H2O]/... [Pg.346]

B. Reduction of Dinitrodurene.—A solution of 90 g. of dini-trodurene in 1 1. of glacial acetic acid is boiled in a 12-I. flask (Note 6) 700 g. of stannous chloride is dissolved in 800 cc. of concentrated hydrochloric acid and heated to boiling. The heat is removed from the acetic acid solution of the nitro compound, and the stannous chloride solution is poured very carefully (during about ten minutes) into the dinitrodurene solution. The reaction is complete in fifteen minutes, and as the solution cools the stannic chloride compound of the diamine begins to crystallize. The reaction mixture is cooled to io° in an ice-water bath, and the solid is filtered off by suction, washed twice with 50 cc. of 95 per cent ethyl alcohol and twice with 50 cc. of ether, and dried. The filtrates from the tin compound contain very little of the reduction product and may be discarded. The composition of this compound is [G (CH i)4(NH2-HCI)2l2-SnCl4, and it crystallizes from the reaction mixture in fine, glistening plates which are almost colorless. The yield is 145 g. (97 per cent of the theoretical amount). [Pg.84]

Korkisch and Koch [106,107] determined low concentrations of uranium in seawater by extraction and ion exchange in a solvent system containing trioctyl phosphine oxide. Uranium is extracted from the sample solution (adjusted to be 1 M in hydrochloric acid and to contain 0.5% of ascorbic acid) with 0.1 M trioctylphos-phine oxide in ethyl ether. The extract is treated with sufficient 2-methoxyethanol and 12 M hydrochloric acid to make the solvent composition 2-methoxyethanol-0.1 M ethereal trioctylphosphine acid-12 M hydrochloric acid (9 10 1) this solution is applied to a column of Dowex 1-X8 resin (Cl" form). Excess of trioctylphosphine oxide is removed by washing the column with the same solvent mixture. Molybdenum is removed by elution with 2-methoxyethanol-30% aqueous hydrogen peroxide-12 M hydrochloric... [Pg.358]

In order to achieve the firm fixation of the artificial cornea to host tissues, composites of collagen-immobilized poly(vinyl alcohol) hydrogel with hydroxyapatite were synthesized by a hydroxyapatite particles kneading method. The preparation method, characterization, and the results of corneal cell adhesion and proliferation on the composite material were studied. PVA-COL-HAp composites were successfully synthesized. A micro-porous structure of the PVA-COL-HAp could be introduced by hydrochloric acid treatment and the porosity could be controlled by the pH of the hydrochloric acid solution, the treatment time, and the crystallinity of the HAp particles. Chick embryonic keratocyto-like cells were well attached and proliferated on the PVA-COL-HAp composites. This material showed potential for keratoprosthesis application. Further study such as a long-term animal study is now required [241]. [Pg.163]

To determine the silver composition of an alloy, a piece of alloy weighing 10-48g was dissolved in nitric acid and the resulting solution was diluted to 1-00 litre in a standard flask. 0-20 moll hydrochloric acid was added to 100-0 cm of this solution until precipitation of silver(l) chloride was complete. [Pg.82]

Membrane Preparation. Dried cellulose diacetate is dissolved in acetone in the weight ratio of 1 to 3 or 4. Gaseous ammonia is directed at room temperature over the solution surface in a rotary evaporator, the ammonia being readily absorbed by the polymer solution. Optimal ammonia concentration is 5 to 6 wt-%, a typical casting solution composition is cellulose diacetate/acetone/ ammonia 18.8/75.2/6.0 (solvent-to-polymer ratio 4). Casting is at room temperature. The precipitation bath is maintained at pH 4 through controlled addition of hydrochloric acid to compensate for the alkaline intake. [Pg.196]

Elemental composition Cr 47.71%, F 52.29%. A nitric or hydrochloric acid solution of the compound may be analyzed for chromium by various instrumental techniques (see Chromium). The solution may be diluted appropriately and measured for fluoride ion by using a fluoride-selective electrode or by ion chromatography. [Pg.224]

Elemental composition Hg 61.80%, N 8.63%, O 29.57%. The compound dissolved in dilute hydrochloric acid and the solution diluted appropriately and analyzed for mercury by cold vapor—AA technique. The aqueous solution is analyzed for nitrate ion by nitrate ion-specific electrode or by ion chromatography. [Pg.575]


See other pages where Hydrochloric acid, composition solutions is mentioned: [Pg.202]    [Pg.331]    [Pg.301]    [Pg.446]    [Pg.163]    [Pg.323]    [Pg.428]    [Pg.205]    [Pg.133]    [Pg.164]    [Pg.831]    [Pg.555]    [Pg.261]    [Pg.284]    [Pg.387]    [Pg.148]    [Pg.429]    [Pg.163]    [Pg.294]    [Pg.463]    [Pg.288]    [Pg.1065]    [Pg.75]    [Pg.346]    [Pg.196]    [Pg.196]    [Pg.216]    [Pg.356]    [Pg.287]    [Pg.234]    [Pg.128]    [Pg.131]    [Pg.331]    [Pg.230]    [Pg.136]    [Pg.750]   
See also in sourсe #XX -- [ Pg.371 ]




SEARCH



Acids hydrochloric acid

Composite solutions

Hydrochloric

Hydrochloric acid

Hydrochloric acid solutions

Solution composition

© 2024 chempedia.info