Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hydrocarbon complexes, acid-soluble

Mass transfer One more difficulty arises from the fact that there are two phases in the reactor (i) hydrocarbon and (ii) acid. The reaction occurs in the acid phase while reactants are feed in hydrocarbon phase. This implies that, in order to reaction occurs, there is mass transfer from hydrocarbon to acid phase. The mass transfer is a very complex phenomenon which can involve the reaction-diffusion equation. However, such a phenomenon is beyond of the goal of this chapter. Both isobutane and propilene are feed in hydrocarbon phase. Solubility of propylene in acid phase is very... [Pg.39]

Conjunct Polymers. Conjunct polymers (frequently called acid-soluble oils in HF alkylation, red oils in sulfuric acid alkylation) are an exceedingly complex mixture of highly unsaturated, cyclic hydrocarbons. These polymers are by-products of tertiary butyl carbonium ions, and their formation undoubtedly Involves a complexity of reactions. Miron and Lee (1963) found the bulk of an HF conjunct polymer to be mode up of molecules containing 2-4 rings with an average ring size of 5-6 carbon atoms. They estimated the number of double bonds per molecule of polymer at about 2.5 to 3. Thus, these polymers are hydrogen-deficient. [Pg.36]

Isobutylene was also found to react In the presence of sulfuric acid to form acid-soluble hydrocarbons that reacted with Isobutane to form alkylate (5). Although the exact nature of these acid-soluble hydrocarbons is not known. It Is thought that they are in part at least t-butyl sulfates (see Reaction 1-2) or that they complex (or react) with the conjunct polymer cations (R" "), as shown in Reaction J. In both cases, isobutylene would be liberated by reverse reactions, and the isobutylene would then alkylate Isobutane. [Pg.137]

Decomposition of Acid-Soluble Hydrocarbon Complexes. As re-ported earlier (11), it has been postulated that 2-butenes may react with the acid-soluble hydrocarbon cations (see Reaction E-2 of Table I). Isobutylene may also react similarly. The resulting acid-soluble ion could later decompose via 8-scission to release isobutylene ... [Pg.139]

Most essential oils are complex mixtures of terpenic and sesquiterpenic hydrocarbons and their oxygenated terpenoid and sesquiterpenoid derivatives (alcohols, aldehydes, ketones, esters, and occasionally carboxylic acids), as well as aromatic (benzenoid) compounds such as phenols, phenolic ethers, and aromatic esters. So-called terpeneless and sesquiterpeneless essential oils are commonly used in the avor industry. Many terpenes are bitter in taste, and many, particularly the terpenic hydrocarbons, are poorly soluble or even completely insoluble in water-ethanol mixtures. Since the hydrocarbons rarely contribute aitything of importance to their avoring properties, their removal is a commercial necessity. They are removed by the so called washing process, a method used mostly for the treatment of citrus oils. This process takes advantage of the different polarities of individual essential oil constituents. The essential oil is added to a carefully selected solvent (usually a water-ethanol solution) and the mixture partitioned by prolonged stirring. This removes some of the more polar oil constituents into the water-ethanol phase (e.g., the solvent phase). Since... [Pg.157]

Cold concentrated sulphuric acid will remove unsaturated hydrocarbons present in saturated hydrocarbons, or alcohols and ethers present in alkyl halides. In the former case soluble sulphonated products are formed, whilst in the latter case alkyl hydrogen sulphates or addition complexes, that are soluble in the concentrated acid, are produced. [Pg.151]

The metal-ion complexmg properties of crown ethers are clearly evident m their effects on the solubility and reactivity of ionic compounds m nonpolar media Potassium fluoride (KF) is ionic and practically insoluble m benzene alone but dissolves m it when 18 crown 6 is present This happens because of the electron distribution of 18 crown 6 as shown m Figure 16 2a The electrostatic potential surface consists of essentially two regions an electron rich interior associated with the oxygens and a hydrocarbon like exterior associated with the CH2 groups When KF is added to a solution of 18 crown 6 m benzene potassium ion (K ) interacts with the oxygens of the crown ether to form a Lewis acid Lewis base complex As can be seen m the space filling model of this... [Pg.669]

Chemical Composition. Wool wax is a complex mixture of esters of water-soluble alcohols (168) and higher fatty acids (169) with a small proportion (ca 0.5%) of hydrocarbons (170). A substantial effort has been made to identify the various components, but results are compHcated by the fact that different workers use wool waxes from different sources and employ different analytical techniques. Nevertheless, significant progress has been made, and it is possible to give approximate percentages of the various components. The wool-wax acids (Table 9) are predominantiy alkanoic, a-hydroxy, and CO-hydroxy acids. Each group contains normal, iso, and anteiso series of various chain length, and nearly all the acids are saturated. [Pg.354]

Most of the inhibitors in use are organic nitrogen compounds and these have been classified by Bregman as (a) aliphatic fatty acid derivatives, b) imidazolines, (c) quaternaries, (d) rosin derivatives (complex amine mixtures based on abietic acid) all of these will tend to have long-chain hydrocarbons, e.g. CigH, as part of the structure, (e) petroleum sulphonic acid salts of long-chain diamines (preferred to the diamines), (/) other salts of diamines and (g) fatty amides of aliphatic diamines. Actual compounds in use in classes (a) to d) include oleic and naphthenic acid salts of n-tallowpropylenediamine diamines RNH(CH2) NH2 in which R is a carbon chain of 8-22 atoms and x = 2-10 and reaction products of diamines with acids from the partial oxidation of liquid hydrocarbons. Attention has also been drawn to polyethoxylated compounds in which the water solubility can be controlled by the amount of ethylene oxide added to the molecule. [Pg.794]

Dipyridiue-chromium(VI) oxide2 was introduced as an oxidant for the conversion of acid-sensitive alcohols to carbonyl compounds by Poos, Arth, Beyler, and Sarett.3 The complex, dispersed in pyridine, smoothly converts secondary alcohols to ketones, but oxidations of primary alcohols to aldehydes are capricious.4 In 1968, Collins, Hess, and Frank found that anhydrous dipyridine-chromium(VI) oxide is moderately soluble in chlorinated hydrocarbons and chose dichloro-methane as the solvent.5 By this modification, primary and secondary alcohols were oxidized to aldehydes and ketones in yields of 87-98%. Subsequently Dauben, Lorber, and Fullerton showed that dichloro-methane solutions of the complex are also useful for accomplishing allylic oxidations.6... [Pg.85]

The solubility of most metals is much higher when they exist as organometallic complexes.4445 Naturally occurring chemicals that can partially complex with metal compounds and increase the solubility of the metal include aliphatic acids, aromatic acids, alcohols, aldehydes, ketones, amines, aromatic hydrocarbons, esters, ethers, and phenols. Several complexation processes, including chelation and hydration, can occur in the deep-well environment. [Pg.799]

Solutions of ruthenium carbonyl complexes in acetic acid solvent under 340 atm of 1 1 H2/CO are stable at temperatures up to about 265°C (166). Reactions at higher temperatures can lead to the precipitation of ruthenium metal and the formation of hydrocarbon products. Bradley has found that soluble ruthenium carbonyl complexes are unstable toward metallization at 271°C under 272 atm of 3 2 H2/CO [109 atm CO partial pressure (165)]. Solutions under these conditions form both methanol and alkanes, products of homogeneous and heterogeneous catalysis, respectively. Reactions followed with time exhibited an increasing rate of alkane formation corresponding to the decreasing concentration of soluble ruthenium and methanol formation rate. Nevertheless, solutions at temperatures as high as 290°C appear to be stable under 1300 atm of 3 2 H2/CO. [Pg.381]


See other pages where Hydrocarbon complexes, acid-soluble is mentioned: [Pg.17]    [Pg.261]    [Pg.281]    [Pg.286]    [Pg.17]    [Pg.261]    [Pg.272]    [Pg.59]    [Pg.633]    [Pg.281]    [Pg.149]    [Pg.114]    [Pg.28]    [Pg.62]    [Pg.10]    [Pg.263]    [Pg.578]    [Pg.9]    [Pg.570]    [Pg.135]    [Pg.285]    [Pg.530]    [Pg.348]    [Pg.241]    [Pg.30]    [Pg.65]    [Pg.143]    [Pg.251]    [Pg.118]    [Pg.135]    [Pg.93]    [Pg.187]    [Pg.109]    [Pg.263]    [Pg.282]   


SEARCH



Complex soluble

Hydrocarbon complexes, acid-soluble decomposition

Hydrocarbons acids

Hydrocarbons complexes

Hydrocarbons solubility

Solubility complexes

© 2024 chempedia.info