Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Homopolymerization butadiene, effect

AlkyUithium compounds are primarily used as initiators for polymerizations of styrenes and dienes (52). These initiators are too reactive for alkyl methacrylates and vinylpyridines. / -ButyUithium [109-72-8] is used commercially to initiate anionic homopolymerization and copolymerization of butadiene, isoprene, and styrene with linear and branched stmctures. Because of the high degree of association (hexameric), -butyIUthium-initiated polymerizations are often effected at elevated temperatures (>50° C) to increase the rate of initiation relative to propagation and thus to obtain polymers with narrower molecular weight distributions (53). Hydrocarbon solutions of this initiator are quite stable at room temperature for extended periods of time the rate of decomposition per month is 0.06% at 20°C (39). [Pg.239]

Lithium diethylamide has been shown to be an effective initiator for the homopolymerization of dienes and styrene llr2). It is also known that such a polymerization process is markedly affected by the presence of polar compounds, such as ethers and amines (2,3). However, there has been no report of the use of a lithium amide containing a built-in polar modifier as a diene polymerization initiator. This paper describes the preparation and use of such an initiator, lithium morpholinide. A comparison between polymerization with this initiator and lithium diethyl amide, with and without polar modifiers, is included. Furthermore, we have examined the effects of lithium-nitrogen initiators on the copolymerization of butadiene and styrene. [Pg.513]

The homopolymerizations were all run in 28 oz. beverage bottles. The bottles were baked for at least 24 hrs. and then capped with crown, three-hole caps and rubber liners. Cooling of the bottles was effected while purging with nitrogen. After cooling, the bottles were charged with the butadiene blend, the heterogeneous initiator-hexane suspension and modifiers. [Pg.514]

The monomer addition scheme, shown at the top, requires an initiator which is capable of removing a hydrogen atom from the allylic position of the butadiene, resonance stabilization of the radical from AIBN does not permit this initiator to effect this reaction while benzoyl peroxide is capable of reaction to remove a hydrogen atom and initiate the reaction. On the other hand the polymeric radical addition scheme requires that homopolymerization of the monomer be initiated and this macroradical then attack the polymer and lead to the formation of the graft copolymer. Huang and Sundberg explain that the reactivity of the monomer... [Pg.114]

An interesting effect of the ionic factors of the polymerization was found by Kuntz (59). He has shown that the homopolymerization of styrene using butyllithium catalysts is six times as rapid as that of butadiene. However, in copolymerization, butadiene polymerized initially at its own rate with relatively small amounts of the styrene being consumed. Only after 90% of the butadiene had been consumed, the styrene began to polymerize at its own rate. THF increased the rate of the polymerization but had little effect on the rate of butadiene to styrene which is polymerized. The butadiene structure is little influenced by copolymerization. The homopolymer contained 44% cis-1.4, 7% 1.2 and 49% trans-1.4 while the butadiene units of the butadiene copolymers contained 40% cis 1.4, 7% 1.2 and 53% trans-1.4 groups. [Pg.368]

As in the case of olefin or diene homopolymerization by RLi, copolymerization is particularly sensitive to solvent effects. Initial-charge (all monomers added together) copolymerization of butadiene and styrene tends to result in a tapered block copolymer (a block of butadiene with increasing levels of styrene, followed by a block of styrene) in hydrocarbon solvents and a random copolymer (a uniform distribution of butadiene and styrene) in polar media. [Pg.78]

The radical model cannot be applied for ionic and coordination polymerizations. With a few exceptions, termination by mutual combination of active centres does not occur. The only possibility is to measure the rate of each copolymerization independently. The situation can be greatly simplified for copolymerizations in living systems. The constants ku and k22 can usually be measured easily in homopolymerizations. Also, the coaddition constants fc12 or k2] are often directly accessible when the M] and M2 active centres can be differentiated spectroscopically or when the rate of monomer M2 (M[) consumption at M] M 2 centres can be measured. Ionic equibria, association, polarity of medium and solvation must be respected, even when their quantitative effect is not known exactly. The unusual situations confronting macromolecular chemistry will be demonstrated by the example of the anionic copolymerization of styrene with butadiene initiated by lithium alkyls in hydrocarbon medium. [Pg.331]

According to the correspondence principle, in the copolymerization of butadiene or isoprene with styrene in hydrocarbon media, the diene should be more active than styrene since its interaction with a slightly polar bond is better correlated with respect to symmetry. In this case, other conditions being equal, the overall rate of diene homopolymerization may be lower than that of styrene since it is determined not only by the reactivity of the monomer but also by the effective concentration of active centers. [Pg.172]

The copolymerization of a,p-unsaturated ketones has been studied extensively in order to improve the poor chemical and thermal stability exhibited by the homopolymers. The vinyl ketones have been copolymerized with most of the common vinyl and diene monomers. The data are given in Ref. [326]. For initiation, the same reagents could be used as for free-radical homopolymerization. Copolymerization was carried out in bulk [371] and in emulsion systems [372]. In copolymerization with methyl methacrylate, vinyl acetate [373], and styrene [371] it was concluded that the relative reactivities of the vinyl ketones increase with the increasing electron-withdrawing nature of the vinyl ketone substituent. Polar and steric effects are not observed. Most of the work has been directed toward the preparation of oil- and solvent-resistant rubbers to replaee styrene-butadiene rubber. Emulsion eopolymerization of butadiene with methyl isopropenyl ketone yielded rubbers with good solvent resistance and low temperature flexibility, but the products tended to harden on storage and were not compatible with natural rubber [374]. The reactive earbonyl function caused sensitivity to alkine reagents. Copolymers of butylacrylate and methyl vinyl ketone, for example, can be erosslinked by treatment with hydrazine [375]. [Pg.646]

The most important polymerization variables which affect the molecular structure of poly butadienes, prepared by the Ba/Mg/Al catalyst, are the ratio of barium salt to Bu2Mg (Ba /Mg ), the polymerization temperature and catalyst concentration. The effect of these variables on -content and molecular weight is summarized in Table 7. Whilst the trends are shown for butadiene homopolymerization, essentially equivalent responses have been obtained for copolymerizations of styrene and butadiene. [Pg.18]

The SAN and ABS cxjpolymers aantain approximately 25 wt% of acrylonitrile and polybutadiene rubber in amounts up to 20 wt%. Other styrene copolymers of industrial importance include styrene—maleic anhydride copolymer (SMA), styrene-divinylbenzene copolymer, acrylic—styrene-acrylonitrile terpolymer, and styrene-butadiene copolymer. Recently, metallocene catalysts have been developed to synthesize syndiotactic polystyrene (sPS). The polymerization process and process conditions have major effects on polymer properties and process economy. For styrene homopolymerization and copolymerization, various types of polymerization reactors are used commercially. [Pg.316]


See other pages where Homopolymerization butadiene, effect is mentioned: [Pg.119]    [Pg.221]    [Pg.93]    [Pg.550]    [Pg.565]    [Pg.97]    [Pg.55]    [Pg.53]    [Pg.563]   


SEARCH



Homopolymerizations

© 2024 chempedia.info