Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Hexacyanoferrates, metal

Because of the time and expense involved, biological assays are used primarily for research purposes. The first chemical method for assaying L-ascorbic acid was the titration with 2,6-dichlorophenolindophenol solution (76). This method is not appHcable in the presence of a variety of interfering substances, eg, reduced metal ions, sulfites, tannins, or colored dyes. This 2,6-dichlorophenolindophenol method and other chemical and physiochemical methods are based on the reducing character of L-ascorbic acid (77). Colorimetric reactions with metal ions as weU as other redox systems, eg, potassium hexacyanoferrate(III), methylene blue, chloramine, etc, have been used for the assay, but they are unspecific because of interferences from a large number of reducing substances contained in foods and natural products (78). These methods have been used extensively in fish research (79). A specific photometric method for the assay of vitamin C in biological samples is based on the oxidation of ascorbic acid to dehydroascorbic acid with 2,4-dinitrophenylhydrazine (80). In the microfluorometric method, ascorbic acid is oxidized to dehydroascorbic acid in the presence of charcoal. The oxidized form is reacted with o-phenylenediamine to produce a fluorescent compound that is detected with an excitation maximum of ca 350 nm and an emission maximum of ca 430 nm (81). [Pg.17]

Exciting developments have occurred in the coordination chemistry of the alkali metals during the last few years that have completely rejuvenated what appeared to be a largely predictable and worked-out area of chemistry. Conventional beliefs had reinforced the predominant impression of very weak coordinating ability, and had rationalized this in terms of the relatively large size and low charge of the cations M+. On this view, stability of coordination complexes should diminish in the sequence Li>Na>K>Rb> Cs, and this is frequently observed, though the reverse sequence is also known for the formation constants of, for example, the weak complexes with sulfate, peroxosulfate, thiosulfate and the hexacyanoferrates in aqueous solutions. [Pg.90]

Heating with the following solids, their fusions, or vapours (a) oxides, peroxides, hydroxides, nitrates, nitrites, sulphides, cyanides, hexacyano-ferrate(III), and hexacyanoferrate(II) of the alkali and alkaline-earth metals (except oxides and hydroxides of calcium and strontium) (b) molten lead, silver, copper, zinc, bismuth, tin, or gold, or mixtures which form these metals upon reduction (c) phosphorus, arsenic, antimony, or silicon, or mixtures which form these elements upon reduction, particularly phosphates, arsenates,... [Pg.95]

Crucibles fitted with permanent porous plates are cleaned by shaking out as much of the solid as possible, and then dissolving out the remainder of the solid with a suitable solvent. A hot 0.1 M solution of the tetrasodium salt of the ethylenediaminetetra-acetic acid is an excellent solvent for many of the precipitates [except metallic sulphides and hexacyanoferrates(III)] encountered in analysis. These include barium sulphate, calcium oxalate, calcium phosphate, calcium oxide, lead carbonate, lead iodate, lead oxalate, and ammonium magnesium phosphate. The crucible may either be completely immersed in the hot reagent or the latter may be drawn by suction through the crucible. [Pg.118]

Trace metals have to be removed, notably manganese, ferrous ions and zinc. This is often accomplished using the compound potassium hexacyanoferrate which predpitates or complexes the metals and, in excess, acts to inhibit growth and indirectly promotes dtric add production. The amount of potassium hexacyanoferrate required is variable depending on the nature of the ion content of the carbon source. [Pg.132]

The Lewis bases attached to the central metal atom or ion in a d-metal complex are known as ligands they can be either ions or molecules. An example of an ionic ligand is the cyanide ion. In the hexacyanoferrate(II) ion, [Fe(CN)6]4, the CN- ions provide the electron pairs that form bonds to the Lewis acid Fe2+. In the neutral complex Ni(CO)4, the Ni atom acts as the Lewis acid and the ligands are the CO molecules. [Pg.790]

The richness of coordination chemistry is enhanced by the variety of shapes that complexes can adopt. The most common complexes have coordination number 6. Almost all these species have their ligands at the vertices of a regular octahedron, with the metal ion at the center, and are called octahedral complexes (1). An example of an octahedral complex is the hexacyanoferrate(ll) ion, [Fe(CN)f, 4. ... [Pg.793]

Cobalt nitrate has the typical dangerous reactions of metal nitrates. Two accidents during which violent detonations occurred were reported. One of them happened when a mixture of this nitrate with powder carbon was ground up. The other took place when a tetraammonium hexacyanoferrate/cobalt nitrate mixture was heated to 220°C. It typifies incompatibiiity of the cyano group with oxidants. [Pg.206]

In both research and practice, critical localised concentrations of metal contamination can be difficult to detect. Potassium hexacyanoferrate(II) (10.80) gives an intense deep blue coloration with iron(III), permitting extremely sensitive detection of tiny iron spots even by visual inspection. It is recommended as a quality control measure on batches of cotton destined for bleaching [237]. However, in view of the random distribution of metal traces, even the most sensitive test cannot guarantee freedom from contamination throughout a batch of goods to be bleached. [Pg.124]

The effects of various metal oxides and salts which promote ignition of amine-red fuming nitric acid systems were examined. Among soluble catalysts, copperQ oxide, ammonium metavanadate, sodium metavanadate, iron(III) chloride (and potassium hexacyanoferrate(II) with o-toluidine) are most effective. Of the insoluble materials, copper(II) oxide, iron(III) oxide, vanadium(V) oxide, potassium chromate, potassium dichromate, potassium hexacyanoferrate(III) and sodium pentacyanonitrosylferrate(II) were effective. [Pg.1573]

Among the variety of materials used for electrode modification the electroactive organic and inorganic polymers seem to be the most prominant ones. In this chapter the electroactive polycrystals of transition metals, hexacyanoferrates, will be discussed for the development of chemical and biological sensors. [Pg.435]

Just a few years after the discovery of the deposition and electroactivity of Prussian blue, other metal hexacyanoferrates were deposited on various electrode surfaces. However, except for ruthenium and osmium, the electroplating of the metal or its anodizing was required for the deposition of nickel [14], copper [15,16], and silver [9] hexacyanoferrates. Later studies have shown the possibilities of the synthesis of nickel, cobalt, indium hexacyanoferrates similar to the deposition of Prussian blue [17-19], as well as palladium [20-22], zinc [23, 24], lanthanum [25-27], vanadium [28], silver [29], and thallium [30] hexacyanoferrates. [Pg.438]

The participation of cations in redox reactions of metal hexacyanoferrates provides a unique opportunity for the development of chemical sensors for non-electroactive ions. The development of sensors for thallium (Tl+) [15], cesium (Cs+) [34], and potassium (K+) [35, 36] pioneered analytical applications of metal hexacyanoferrates (Table 13.1). Later, a number of cationic analytes were enlarged, including ammonium (NH4+) [37], rubidium (Rb+) [38], and even other mono- and divalent cations [39], In most cases the electrochemical techniques used were potentiometry and amperometry either under constant potential or in cyclic voltammetric regime. More recently, sensors for silver [29] and arsenite [40] on the basis of transition metal hexacyanoferrates were proposed. An apparent list of sensors for non-electroactive ions is presented in Table 13.1. [Pg.439]

Some monovalent ions promote the electroactivity of metal hexacyanoferrates rather similarly, which affects selectivity of the corresponding sensors. In particular, it... [Pg.439]

Except for sensor applications, the intercalation of alkali metal ions in metal hexacyanoferrates was used for adsorption and separation of cesium ions from different aqueous solutions with Prussian blue [43,44] and cupric hexacyanoferrate [45,46],... [Pg.440]

Whereas detection of electroinactive ions was principally worked out at the end of last century, the use of transition metal hexacyanoferrates as sensors for various electroactive compounds still attracts particular interest of scientists. Although the cross-selectivity of such compounds must be low, a number of them have been successfully used for analysis of real objects. [Pg.440]

In contrast to a variety of oxidizable compounds, only a few examples for the detection of strong oxidants with transition metal hexacyanoferrates were shown. Among them, hydrogen peroxide is discussed in the following section. Except for H202, the reduction of carbon dioxide [91] and persulfate [92] by Prussian blue-modified electrode was shown. The detection of the latter is important in cosmetics. It should be noted that the reduction of Prussian blue to Prussian white occurs at the lowest redox potential as can be found in transition metal hexacyanoferrates. [Pg.441]

The possibility for electropolymerization on the top surface of Prussian blue films was probably first shown in [126] describing the high oxidizing ability of Berlin green, the fully oxidized form of Prussian blue. Afterwards non-conducting polymers were synthesized on the top surface of transition metal hexacyanoferrate-modified electrodes for immobilization of the enzyme [127],... [Pg.444]

Application of transition metal hexacyanoferrates for development of biosensors was first announced by our group in 1994 [118]. The goal was to substitute platinum as the most commonly used hydrogen peroxide transducer for Prussian blue-modified electrode. The enzyme glucose oxidase was immobilized on the top of the transducer in the polymer (Nation) membrane. The resulting biosensor showed advantageous characteristics of both sensitivity and selectivity in the presence of commonly tested reductants, such as ascorbate and paracetamol. [Pg.449]

Except for Prussian blue activity in hydrogen peroxide, reduction has been shown for a number of transition metal hexacyanoferrates. The latter were cobalt [151], nickel [152], chromium [150], titanium [153], copper [154], manganese [33], and vanadium [28] hexacyanoferrates. However, as was shown in review [117], catalytic activity of the mentioned inorganic materials in H202 reduction is either very low, or is provided by impurities of Prussian blue in the material. Nevertheless, a number of biosensors based on different transition metal hexacyanoferrates have been developed. [Pg.449]

Metal hexacyanoferrates-based biosensors were developed for analysis of glucose [11, 114, 118, 127, 147, 149, 152, 155-166], ethanol [11], D-alanine [147], oxalate [167-169], cholesterol [170, 171], glutamate [114, 119], sucrose [172], and choline [163], Among the transducers used Prussian blue undoubtedly dominates especially if one takes into account that instead of both chromium and cobalt hexacyanoferrates the activity of the transducers in publications [149, 159, 167, 168] was most probably provided by Prussian blue [117]. The sensitivity of cupric hexacyanoferrate is several orders of magnitude lower compared to Prussian blue. However, chemically synthesized... [Pg.449]


See other pages where Hexacyanoferrates, metal is mentioned: [Pg.596]    [Pg.596]    [Pg.120]    [Pg.186]    [Pg.134]    [Pg.281]    [Pg.258]    [Pg.158]    [Pg.1590]    [Pg.83]    [Pg.434]    [Pg.434]    [Pg.434]    [Pg.434]    [Pg.434]    [Pg.435]    [Pg.435]    [Pg.436]    [Pg.438]    [Pg.440]    [Pg.442]    [Pg.448]    [Pg.449]    [Pg.449]    [Pg.453]   


SEARCH



Biosensors based on transition metal hexacyanoferrates

Electroactive-inorganic-polycrystals-based chemical transition metal hexacyanoferrates

Electrochemistry of transition metal hexacyanoferrates

Hexacyanoferrate

Hexacyanoferrates, metal decompositions

Prussian Blue and Analogous Transition Metal Hexacyanoferrates

Structure of transition metal hexacyanoferrates

Transition metal hexacyanoferrates

Transition metal hexacyanoferrates biosensors

Transition metal hexacyanoferrates electrochemistry

Transition metal hexacyanoferrates structure

© 2024 chempedia.info