Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Heavy metals analytical techniques

The General Tests and Assays. This section of the USP gives methods for tests that are general in nature and apply to a number of the substances. Procedures are iacluded for such tests as heavy metals, melting point, chloride, sulfate, sterility, bacterial endotoxins, and pyrogens. Also iacluded are descriptions of various analytical techniques, such as spectrophotometry, chromatography, and nmr, and descriptions of tests to be used on glass or plastic containers, mbber closures, etc. [Pg.445]

Chemical Properties. Elemental analysis, impurity content, and stoichiometry are determined by chemical or iastmmental analysis. The use of iastmmental analytical methods (qv) is increasing because these ate usually faster, can be automated, and can be used to determine very small concentrations of elements (see Trace AND RESIDUE ANALYSIS). Atomic absorption spectroscopy and x-ray fluorescence methods are the most useful iastmmental techniques ia determining chemical compositions of inorganic pigments. Chemical analysis of principal components is carried out to determine pigment stoichiometry. Analysis of trace elements is important. The presence of undesirable elements, such as heavy metals, even in small amounts, can make the pigment unusable for environmental reasons. [Pg.4]

The term direct TXRF refers to surface impurity analysis with no surface preparation, as described above, achieving detection Umits of 10 °—10 cm for heavy-metal atoms on the silicon surface. The increasit complexity of integrated circuits fabricated from silicon wafers will demand even greater surfrce purity in the future, with accordingly better detection limits in analytical techniques. Detection limits of less than 10 cm can be achieved, for example, for Fe, using a preconcentration technique known as Vapor Phase Decomposition (VPD). [Pg.352]

Anodic stripping voltammetry (ASV) has been used extensively for the determination of heavy metals in samples of biological origin, such as lead in blood. ASV has the lowest detection limit of the commonly used electroanalytical techniques. Analyte concentrations as low as 10 M have been determined. Figure 16 illustrates ASV for the determination of Pb at a mercury electrode. The technique consists of two steps. The potential of the electrode is first held at a negative value for several minutes to concentrate some of the Pb " from the solution into the mercury electrode as Pb. The electrode process is... [Pg.39]

First step of the approach is the chemical characterization of leachate using well-established analytical techniques (Fig. 2) GC-MS for polar organic compounds (POCs), HRGC-MS for PCDD/Fs, PCBs and PAHs [18], atomic absorption spectrometry for heavy metals and ion chromatography for ammonia. [Pg.176]

When the problem has been defined and needed background information has been studied, it is time to consider which analytical methods will provide the data you need to solve the problem. In selecting techniques, you can refer back to the other chapters in this book. For example, if you want to measure the three heavy metals (Co, Fe, and Ni) that were suspect in the Bulging Drum Problem, you might immediately think of atomic absorption or inductively coupled plasma atomic emission spectroscopies and reread Chapter 8 of this book. How would you choose between them Which would be more accurate More precise Does your lab have both instruments Are they both in working order What if you have neither of them What sample preparation would be needed ... [Pg.814]

The introduction of EU directives on Waste Electrical and Electronic Equipment and Reduction of Hazardous Substances has highlighted the need for precise and repeatable elemental analysis of heavy metals in the plastics production process. X-ray fluorescence (XRF) spectroscopy has emerged as the most economical and effective analytical tool for achieving this. A set of certified standards, known as TOXEL, is now available to facilitate XRF analyses in PE. Calibration with TOXEL standards is simplified by the fact that XRF is a multi-element technique. Therefore a single set of the new standards can be used to calibrate several heavy elements, covering concentrations from trace level to several hundred ppm. This case study is the analysis of heavy metals in PE using an Epsilon 5 XRF spectrometer. [Pg.30]

Contamination of silicon wafers by heavy metals is a major cause of low yields in the manufacture of electronic devices. Concentrations in the order of 1011 cm-3 [Ha2] are sufficient to affect the device performance, because impurity atoms constitute recombination centers for minority carriers and thereby reduce their lifetime [Scl7]. In addition, precipitates caused by contaminants may affect gate oxide quality. Note that a contamination of 1011 cnT3 corresponds to a pinhead of iron (1 mm3) dissolved in a swimming pool of silicon (850 m3). Such minute contamination levels are far below the detection limit of the standard analytical techniques used in chemistry. The best way to detect such traces of contaminants is to measure the induced change in electronic properties itself, such as the oxide defect density or the minority carrier lifetime, respectively diffusion length. [Pg.211]

Methods based on the inhibitory effect of the analyte and the use of an enzyme thermistor have primarily been applied to environmental samples and typically involve measuring the inhibitory effect of a pollutant on an enzyme or on the metabolism of appropriate cells [162]. The inhibiting effect of urease was used to develop methods for the determination of heavy metals such as Hg(II), Cu(II) and Ag(I) by use of the enzyme immobilized on CPG. For this purpose, the response obtained for a 0.5-mL standard pulse of urea in phosphate buffer at a flow-rate of 1 mL/min was recorded, after which 0.5 mL of sample was injected. A new 0.5-mL pulse of urea was injected 30 s after the sample pulse (accurate timing was essential) and the response compared with that of the non-inhibited peak. After a sample was run, the initial response could be restored by washing the column with 0.1-0.3 M Nal plus 50 mM EDTA for 3 min. Under these conditions, 50% inhibition (half the initial response) was obtained for a 0.5-mL pulse of 0.04-0.05 mM Hg(II) or Ag(I), or 0.3 mM Cu(II). In some cases, the enzyme was inhibited irreversibly. In this situation, a reversible enzyme immobilization technique... [Pg.140]

Ottaway, J. M. Heavy metals determinations by atomic absorption and emission spectrometry in Analytical Techniques for Heavy Metals in Biological Fluids, (ed.) Facchetti, S., Amsterdam—Oxford—New York Elsevier 1983... [Pg.172]

Toxic hazards never seem as acute as other hazards in the ordnance industries, and the prevailing habits of cleanliness and orderliness go a long way toward their amelioration. The current emphasis on the maintenance of environmental standards have placed additional requirements on the control of effluent gas and liq process streams. The care now being exercised is evidenced by new analytical techniques for the detection of trace contaminants such as the presence of TNT and other aromatic nitrates in the soli and in the ground w (Ref 43), New techniques of detoxification have been developed using microwave plasma oxidation of aromatic compds, heavy metal compns and chemical warfare agents (Refs 65 81)... [Pg.237]

Chemical interferences may be produced by overlapping spectra of different elements or as the result of x-ray absorption or enhancement. Either effect is common in soil contaminated with heavy metals. Chemical interferences may be substantially reduced through a mathematical correction, but they cannot be completely eliminated. Other factors that affect the accuracy of XRF analysis are the instrument settings and the operator technique, especially in in situ measurements. A correlation of XRF results with laboratory analysis by other analytic techniques should be always established in the early stages of the project implementation and confirmed, if changes in the nature of soil samples have been observed. [Pg.178]

As defined in Section 6.8, a xenobiotic species is one that is foreign to living systems. Common examples include heavy metals, such as lead, which serve no physiologic function, and synthetic organic compounds, which are not made in nature. Exposure of organisms to xenobiotic materials is a very important consideration in environmental and toxicological chemistry. Therefore, the determination of exposure by various analytical techniques is one of the more crucial aspects of environmental chemistry. [Pg.414]

Organotin stabilisers have been caught up in the elimination of heavy metal discussions. There are also improved analytical techniques now available to detect very low levels of organotin species in different environments (127,183). [Pg.11]

Soodan, R.K., Pakade, Y.B., Nagpal, A., Katnoria, J.K. Analytical techniques for estimation of heavy metals in soil ecosystem a tabulated review. Talanta 125, 405 10 (2014)... [Pg.148]

Maintaining the quality of food is a far more complex problem than the quality assurance of non-food products. Analytical methods are an indispensable monitoring tool for controlling levels of substances essential for health and also of toxic substances, including heavy metals. The usual techniques for detecting elements in food are flame atomic absorption spectroscopy (FAAS), graphite furnace atomic absorption spectrometry (GF AAS), hydride generation atomic absorption spectrometry (HG AAS), cold vapour atomic absorption spectrometry (CV AAS), inductively coupled plasma atomic emission spectrometry (ICP AES), inductively coupled plasma mass spectrometry (ICP MS) and neutron activation analysis (NAA). [Pg.204]


See other pages where Heavy metals analytical techniques is mentioned: [Pg.312]    [Pg.350]    [Pg.155]    [Pg.3]    [Pg.269]    [Pg.511]    [Pg.578]    [Pg.88]    [Pg.392]    [Pg.456]    [Pg.385]    [Pg.68]    [Pg.565]    [Pg.299]    [Pg.511]    [Pg.329]    [Pg.95]    [Pg.243]    [Pg.350]    [Pg.182]    [Pg.600]    [Pg.29]    [Pg.52]    [Pg.264]    [Pg.198]    [Pg.201]    [Pg.204]    [Pg.392]    [Pg.456]    [Pg.514]    [Pg.230]    [Pg.320]    [Pg.64]   
See also in sourсe #XX -- [ Pg.74 ]




SEARCH



Analytical techniques

Metals Techniques

Metals analytical techniques

© 2024 chempedia.info