Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Half-stable

Each of these systems has a fixed point x — 0 with f x ) = 0. However the stability is different in each case. Figure 2.4.1 shows that (a) is stable and (b) is unstable. Case (c) is a hybrid case we II call half-stable, since the fixed point is attracting from the left and repelling from the right. We therefore indicate this type of fixed point by a half-filled circle. Case (d) is a whole line of fixed points perturbations neither grow nor decay. [Pg.26]

As r approaches 0 from below, the parabola moves u p and the two fixed points move toward each other. When r = 0, the fixed points coalesce into a half-stable fixed point at X = 0 (Figure 3.1.1b). This type of fixed point is extremely delicate—it vanishes as soon as r > 0, and now there are no fixed points at all (Figure 3.1.1c),... [Pg.45]

If all neighboring trajectories approach the limit cycle, we say the limit cycle is stable or attracting. Otherwise the limit cycle is unstable, or in exceptional cases, half-stable. [Pg.196]

At p a half-stable cycle is born out of the clear blue sky. As p. increases it splits into a pair of limit cycles, one stable, one unstable. Viewed in the other direction, a stable and unstable cycle collide and disappear as p decreases through p, Notice that the origin remains stable throughout it does not participate in this bifurcation. [Pg.261]

On a resonant invariant curve, out of the infinite set of r-multiple fixed points, only a finite (even) number survive, half stable and half unstable, as a consequence of the Poincare-Birkhoff fixed point theorem (Arnold and Avez, 1968 Lichtenberg and Lieberman, 1983), as shown schematically in Figure 14b. [Pg.75]

X =[Ri,K2,M3] with IR2 = 1 3 Asymptotically stable/unstable node + half unstable saddle/half stable saddle node 2... [Pg.84]

All elements of atomic number greater than 83 exhibit radioactive decay K, Rb, Ir and a few other light elements emit p particles. The heavy elements decay through various isotopes until a stable nucleus is reached. Known half-lives range from seconds to 10 years. [Pg.339]

Secondly, the linearized inverse problem is, as well as known, ill-posed because it involves the solution of a Fredholm integral equation of the first kind. The solution must be regularized to yield a stable and physically plausible solution. In this apphcation, the classical smoothness constraint on the solution [8], does not allow to recover the discontinuities of the original object function. In our case, we have considered notches at the smface of the half-space conductive media. So, notche shapes involve abrupt contours. This strong local correlation between pixels in each layer of the half conductive media suggests to represent the contrast function (the object function) by a piecewise continuous function. According to previous works that we have aheady presented [14], we 2584... [Pg.326]

In the older form of the periodic table, chromium was placed in Group VI, and there are some similarities to the chemistry of this group (Chapter 10). The outer electron configuration, 3d 4s. indicates the stability of the half-filled d level. 3d 4s being more stable than the expected 3d 4s for the free atom. Like vanadium and titanium, chromium can lose all its outer electrons, giving chromium)VI) however, the latter is strongly oxidising and is... [Pg.376]

The IE scheme is nonconservative, with the damping both frequency and timestep dependent [42, 43]. However, IE is unconditionally stable or A-stable, i.e., the stability domain of the model problem y t) = qy t), where q is a complex number (exact solution y t) = exp(gt)), is the set of all qAt satisfying Re (qAt) < 0, or the left-half of the complex plane. The discussion of IE here is only for future reference, since the application of the scheme is faulty for biomolecules. [Pg.238]

This product is sufficiently pure for the preparation of phenylacetic acid and its ethyl ester, but it contains some benzyl tso-cyanide and usually develops an appreciable colour on standing. The following procedure removes the iso-cyanide and gives a stable water-white compound. Shake the once-distilled benzyl cyanide vigorously for 5 minutes with an equal volume of warm (60°) 60 per cent, sulphuric acid (prepared by adding 55 ml. of concentrated sulphuric acid to 100 ml. of water). Separate the benzyl cyanide, wash it with an equal volume of sa+urated sodium bicarbonate solution and then with an equal volume of half-saturated sodium chloride solution- Dry with anhydrous magnesium sulphate and distil under reduced pressure. The loss in washing is very small (compare n-Butyl Cyanide, Section 111,113, in which concentrated hydrochloric acid is employed). [Pg.761]

Thirty isotopes are recognized. Only one stable isotope, 1271 is found in nature. The artificial radioisotope 1311, with a half-life of 8 days, has been used in treating the thyroid gland. The most common compounds are the iodides of sodium and potassium (KI) and the iodates (KIOs). Lack of iodine is the cause of goiter. [Pg.122]

Valence bond and molecular orbital theory both incorporate the wave description of an atom s electrons into this picture of H2 but m somewhat different ways Both assume that electron waves behave like more familiar waves such as sound and light waves One important property of waves is called interference m physics Constructive interference occurs when two waves combine so as to reinforce each other (m phase) destructive interference occurs when they oppose each other (out of phase) (Figure 2 2) Recall from Section 1 1 that electron waves m atoms are characterized by their wave function which is the same as an orbital For an electron m the most stable state of a hydrogen atom for example this state is defined by the Is wave function and is often called the Is orbital The valence bond model bases the connection between two atoms on the overlap between half filled orbifals of fhe fwo afoms The molecular orbital model assembles a sef of molecular orbifals by combining fhe afomic orbifals of all of fhe atoms m fhe molecule... [Pg.59]

Half chair (Section 3 6) One of the two most stable conforma tions of cyclopentane Three consecutive carbons in the half chair conformation are coplanar The fourth and fifth carbon he respectively above and below the plane... [Pg.1285]

Anhydrous, monomeric formaldehyde is not available commercially. The pure, dry gas is relatively stable at 80—100°C but slowly polymerizes at lower temperatures. Traces of polar impurities such as acids, alkahes, and water greatly accelerate the polymerization. When Hquid formaldehyde is warmed to room temperature in a sealed ampul, it polymerizes rapidly with evolution of heat (63 kj /mol or 15.05 kcal/mol). Uncatalyzed decomposition is very slow below 300°C extrapolation of kinetic data (32) to 400°C indicates that the rate of decomposition is ca 0.44%/min at 101 kPa (1 atm). The main products ate CO and H2. Metals such as platinum (33), copper (34), and chromia and alumina (35) also catalyze the formation of methanol, methyl formate, formic acid, carbon dioxide, and methane. Trace levels of formaldehyde found in urban atmospheres are readily photo-oxidized to carbon dioxide the half-life ranges from 35—50 minutes (36). [Pg.491]

Although rare-earth ions are mosdy trivalent, lanthanides can exist in the divalent or tetravalent state when the electronic configuration is close to the stable empty, half-fUed, or completely fiUed sheUs. Thus samarium, europium, thuUum, and ytterbium can exist as divalent cations in certain environments. On the other hand, tetravalent cerium, praseodymium, and terbium are found, even as oxides where trivalent and tetravalent states often coexist. The stabili2ation of the different valence states for particular rare earths is sometimes used for separation from the other trivalent lanthanides. The chemicals properties of the di- and tetravalent ions are significantly different. [Pg.540]

Radioactivity occurs naturally in earth minerals containing uranium and thorium. It also results from two principal processes arising from bombardment of atomic nuclei by particles such as neutrons, ie, activation and fission. Activation involves the absorption of a neutron by a stable nucleus to form an unstable nucleus. An example is the neutron reaction of a neutron and cobalt-59 to yield cobalt-60 [10198 0-0] Co, a 5.26-yr half-life gamma-ray emitter. Another is the absorption of a neutron by uranium-238 [24678-82-8] to produce plutonium-239 [15117 8-5], Pu, as occurs in the fuel of a nuclear... [Pg.228]

Transformations in the Solid State. From a practical standpoint, the most important soHd-state transformation of PB involves the irreversible conversion of its metastable form II developed during melt crystallization into the stable form I. This transformation is affected by the polymer molecular weight and tacticity as well as by temperature, pressure, mechanical stress, and the presence of impurities and additives (38,39). At room temperature, half-times of the transformation range between 4 and 45 h with an average half-time of 22—25 h (39). The process can be significantly accelerated by annealing articles made of PB at temperatures below 90°C, by ultrasonic or y-ray irradiation, and by utilizing various additives. Conversion of... [Pg.427]

The calculated half-life of 1 mol % (1.5 wt %) of pure gaseous ozone diluted with oxygen at 25, 100, and 250°C (based on rate constants from Ref. 19) is 19.3 yr, 5.2 h, and 0.1 s, respectively. Although pure ozone—oxygen mixtures are stable at ordinary temperatures ia the absence of catalysts and light, ozone produced on an iadustrial scale by silent discharge is less stable due to the presence of impurities however, ozone produced from oxygen is more stable than that from air. At 20°C, 1 mol % ozone produced from air is - 30% decomposed ia 12 h. [Pg.491]


See other pages where Half-stable is mentioned: [Pg.97]    [Pg.455]    [Pg.97]    [Pg.455]    [Pg.181]    [Pg.22]    [Pg.361]    [Pg.385]    [Pg.389]    [Pg.444]    [Pg.45]    [Pg.106]    [Pg.175]    [Pg.198]    [Pg.207]    [Pg.209]    [Pg.25]    [Pg.45]    [Pg.217]    [Pg.377]    [Pg.4]    [Pg.4]    [Pg.7]    [Pg.223]    [Pg.278]    [Pg.263]    [Pg.20]    [Pg.299]    [Pg.130]    [Pg.218]    [Pg.242]    [Pg.92]   
See also in sourсe #XX -- [ Pg.26 ]




SEARCH



© 2024 chempedia.info