Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Cerium tetravalent

Although rare-earth ions are mosdy trivalent, lanthanides can exist in the divalent or tetravalent state when the electronic configuration is close to the stable empty, half-fUed, or completely fiUed sheUs. Thus samarium, europium, thuUum, and ytterbium can exist as divalent cations in certain environments. On the other hand, tetravalent cerium, praseodymium, and terbium are found, even as oxides where trivalent and tetravalent states often coexist. The stabili2ation of the different valence states for particular rare earths is sometimes used for separation from the other trivalent lanthanides. The chemicals properties of the di- and tetravalent ions are significantly different. [Pg.540]

Separation Processes. The product of ore digestion contains the rare earths in the same ratio as that in which they were originally present in the ore, with few exceptions, because of the similarity in chemical properties. The various processes for separating individual rare earth from naturally occurring rare-earth mixtures essentially utilize small differences in acidity resulting from the decrease in ionic radius from lanthanum to lutetium. The acidity differences influence the solubiUties of salts, the hydrolysis of cations, and the formation of complex species so as to allow separation by fractional crystallization, fractional precipitation, ion exchange, and solvent extraction. In addition, the existence of tetravalent and divalent species for cerium and europium, respectively, is useful because the chemical behavior of these ions is markedly different from that of the trivalent species. [Pg.543]

Group 3 (IIIB) and Inner Transition-Metal Perchlorates. The rare-earth metal perchlorates of yttrium and lanthanum have been reported (53). Tetravalent cerium perchlorate [14338-93-3] 06(0.04)4, and uranium perchlorate have also been identified (54). [Pg.66]

The fluorite stmcture, which has a large crystal lattice energy, is adopted by Ce02 preferentially stahi1i2ing this oxide of the tetravalent cation rather than Ce202. Compounds of cerium(IV) other than the oxide, ceric fluoride [10060-10-3] CeF, and related materials, although less stable can be prepared. For example ceric sulfate [13590-82-4] Ce(S0 2> certain double salts are known. [Pg.366]

Cerium Oxide. The most stable oxide of cerium is cerium dioxide [1306-38-3] Ce02, also called ceria or ceric oxide. When cerium salts are calcined in air or if oxygen is present, this tetravalent Ce(IV) oxide is formed, cerium sesquioxide [1345-13-7] can be prepared in strongly reducing... [Pg.367]

Hydroxide. Freshly precipitated cerous hydroxide [15785-09-8] Ce(OH)2, is readily oxidized by air or oxygenated water, through poorly defined violet-tinged mixed valence intermediates, to the tetravalent buff colored ceric hydroxide [12014-56-17, Ce(OH)4. The precipitate, which can prove difficult to filter, is amorphous and on drying converts to hydrated ceric oxide, Ce02 2H20. This commercial material, cerium hydrate [23322-64-7] behaves essentially as a reactive cerium oxide. [Pg.367]

Partial carboxymethylation of wood pulp significantly increases its susceptibility toward grafting with acrylonitrile using the ceric ion as the initiator 146]. Studies dealing with grafting of various vinyl monomers, such as acrylonitrile, methylmethacrylate, and acrylamide, onto partially carboxymethylated cotton cellulose using tetravalent cerium as the initiator have been reported [47]. [Pg.537]

As it was shown in73, 74), methods that can be used to synthesize these copolymers of PAN are those of radical AN block copolymerization in the presence of an oxidation-reduction system in which the hydroxyl end groups of polyethylene oxide) (PEO)73) and polypropylene oxide) (PPO)74- oligomers serve as the reducing agents and tetravalent cerium salts as the oxidizing agents. [Pg.130]

An example of the process of a passivating metal is the reaction of tetravalent cerium with iron (see Fig. 5.54D). Iron that has not been previously passivated dissolves in an acid solution containing tetravalent cerium ions, in an active state at a potential of Emix2. After previous passivation, the rate of corrosion is governed by the corrosion current ya and the potential assumes a value of Emixl. [Pg.394]

The transition-metal and rare-earth core-line XPS spectra show little, if any, BE shifts at all. Nevertheless, information about atomic charge and valence states can be extracted by examining other features in the spectra. The plasmon loss satellite intensity found in the spectra of Co-containing compounds provides a particularly useful handle on the Co charge. The lineshapes of RE spectra are characteristic of their valence state, as seen in the distinction between trivalent and tetravalent cerium in CeFe4Pni2 compounds. [Pg.139]

In 1942, the Mallinckrodt Chemical Company adapted a diethylether extraction process to purify tons of uranium for the U.S. Manhattan Project [2] later, after an explosion, the process was switched to less volatile extractants. For simultaneous large-scale recovery of the plutonium in the spent fuel elements from the production reactors at Hanford, United States, methyl isobutyl ketone (MIBK) was originally chosen as extractant/solvent in the so-called Redox solvent extraction process. In the British Windscale plant, now Sellafield, another extractant/solvent, dibutylcarbitol (DBC or Butex), was preferred for reprocessing spent nuclear reactor fuels. These early extractants have now been replaced by tributylphosphate [TBP], diluted in an aliphatic hydrocarbon or mixture of such hydrocarbons, following the discovery of Warf [9] in 1945 that TBP separates tetravalent cerium from... [Pg.509]

The main usefulness of Eh-pH diagrams consists in the immediacy of qualitative information about the effects of redox and acid-base properties of the system on elemental solubility. Concerning, for instance, cerium, figure 8.20 immediately shows that, within the stability field of water, delimited upward by oxidation boundary curve o and downward by reduction boundary curve r, the element (in the absence of other anionic ligands besides OH groups) is present in solution mainly as trivalent cerium Ce and as soluble tetravalent hydroxide Ce(OH)2. It is also evident that, with increasing pH, cerium precipitates as trivalent hydroxide Ce(OH)3. [Pg.550]

Europeum generally is produced from two common rare earth minerals monazite, a rare earth-thorium orthophosphate, and bastnasite, a rare earth fluocarbonate. The ores are crushed and subjected to flotation. They are opened by sulfuric acid. Reaction with concentrated sulfuric acid at a temperature between 130 to 170°C converts thorium and the rare earths to their hydrous sulfates. The reaction is exothermic which raises the temperature to 250°C. The product sulfates are treated with cold water which dissolves the thorium and rare earth sulfates. The solution is then treated with sodium sulfate which precipitates rare earth elements by forming rare earth-sodium double salts. The precipitate is heated with sodium hydroxide to obtain rare earth hydrated oxides. Upon heating and drying, cerium hydrated oxide oxidizes to tetravalent ceric(lV) hydroxide. When the hydrated oxides are treated with hydrochloric acid or nitric acid, aU but Ce4+ salt dissolves in the acid. The insoluble Ce4+ salt is removed. [Pg.295]

The oxalates obtained above, alternatively, are digested with sodium hydroxide converting the rare earth metals to hydroxides. Cerium forms a tetravalent hydroxide, Ce(OH)4, which is insoluble in dilute nitric acid. When dilute nitric acid is added to this rare earth hydroxide mixture, cerium(lV) hydroxide forms an insoluble basic nitrate, which is filtered out from the solution. Cerium also may be removed by several other procedures. One such method involves calcining rare earth hydroxides at 500°C in air. Cerium converts to tetravalent oxide, Ce02, while other lanthanides are oxidized to triva-lent oxides. The oxides are dissolved in moderately concentrated nitric acid. Ceric nitrate so formed and any remaining thorium nitrate present is now removed from the nitrate solution hy contact with tributyl pbospbate in a countercurrent. [Pg.599]

The bastnasite ore is calcined after concentration by flotation, then a hydrochloric acid attack under certain operating conditions solubilize most of the trivalent rare earths. The residue, which is recovered by filtration contains the tetravalent component of bastnasite along with 65 to 80% cerium oxide. [Pg.145]

Commercial separations involving the oxidation to the tetra-valent state are limited to the removal of cerium after oxidation. These separations, which are based upon reduced basicity in the tetravalent state, include ... [Pg.153]

The main processes occurring in this system are the following [219] bromate oxidizes trivalent cerium to tetravalent cerium Ce4+ oxidizes bromomalonic acid, and is reduced to Ce3+. The bromide ion, which inhibits the reaction, is isolated from the oxidation products of bromomalonic acid. During the reaction, the concentration of the Ce4+ ions (and Ce3+) oscillates several times, passing through a maximum and a minimum. The shape of the peaks of concentrations and the frequency depend on the reaction conditions. The autooscillation character of the kinetics of the cerium ions disappears if Ce4+ or Br are continuously introduced with a low rate into the reaction mixture. The autooscillation regime of the reaction takes place only in a certain interval of concentrations of the reactants [malonic... [Pg.412]

After filtering off the solid residue, the cold solution is treated with sodium sulphate. The precipitated double sulphate of the rare earths is washed with 0.3N sodium sulphate, and then boiled with excess (10%) sodium hydroxide to convert the double sulphate into a hydroxide. The rare earths hydroxides are filtered off and dried at 120° C to oxidize trivalent cerium into the tetravalent state. The dried material contains about half of the original thorium coprecipitated with rare earth double sulphates. [Pg.103]

In aqueous solutions, trivalent lanthanides are very stable whereas only a limited number of lanthanides exhibit a stable divalent or tetravalent state. Practically, only Ce4+and Eu2+ exist in aqueous solutions. The properties of these cations are very different from the properties of the trivalent lanthanides. For example, Ce4+ is more acidic and cerium(IV) hydroxide precipitates at pH 1. Eu2+ is less acidic and europium(II) hydroxide does not precipitate at pH 7—8.5, whereas trivalent lanthanide hydroxides do. Some industrial separations are based on these phenomena. [Pg.541]


See other pages where Cerium tetravalent is mentioned: [Pg.540]    [Pg.543]    [Pg.547]    [Pg.547]    [Pg.547]    [Pg.365]    [Pg.367]    [Pg.241]    [Pg.256]    [Pg.130]    [Pg.367]    [Pg.411]    [Pg.220]    [Pg.27]    [Pg.373]    [Pg.123]    [Pg.445]    [Pg.431]    [Pg.121]    [Pg.123]    [Pg.246]    [Pg.1113]    [Pg.1115]    [Pg.1423]    [Pg.540]    [Pg.543]    [Pg.547]   
See also in sourсe #XX -- [ Pg.121 ]




SEARCH



Koen Binnemans Applications of tetravalent cerium compounds

Organometallic tetravalent cerium

Tetravalence

Tetravalent

Tetravalent cerium compounds

Tetravalent chemistry cerium

© 2024 chempedia.info