Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Graft copolymer solution properties

An effective method of NVF chemical modification is graft copolymerization [34,35]. This reaction is initiated by free radicals of the cellulose molecule. The cellulose is treated with an aqueous solution with selected ions and is exposed to a high-energy radiation. Then, the cellulose molecule cracks and radicals are formed. Afterwards, the radical sites of the cellulose are treated with a suitable solution (compatible with the polymer matrix), for example vinyl monomer [35] acrylonitrile [34], methyl methacrylate [47], polystyrene [41]. The resulting copolymer possesses properties characteristic of both fibrous cellulose and grafted polymer. [Pg.796]

Systematic studies67) to determine the properties of solutions of the obtained graft copolymers showed that graft copolymers containing stiff main chains (PAA,... [Pg.128]

Two types of well defined branched polymers are acessible anionically star-shaped polymers and comb-like polymers87 88). Such macromolecules are used to investigate the effect of branching on the properties, 4n solution as well as in the the bulk. Starshaped macromolecules contain a known number of identical chains which are linked at one end to a central nodule. The size of the latter should be small with respect to the overall molecular dimensions. Comb-like polymers comprise a linear backbone of given length fitted with a known number of randomly distributed branches of well defined size. They are similar to graft copolymers, except that backbone and branches are of identical chemical nature and do not exhibit repulsions. [Pg.160]

Poly(starch-g-(l-amidoethylene)) copolymer is not a polyelectrolyte and will be a smaller molecule in water than an equal molecular weight, partially hydrolyzed poly(l-amidoethylene). Polyelectrolyte effect should, however, cause the graft copolymer to expand in solution in the same way it causes poly(l -amidoethylene) to expand, so a series of hydrolyzed graft copolymers were prepared from poly(starch-g-(l-amidoethylene))(41-43) and these derivatives were tested to determine the effect of hydrolysis on copolymer properties in solution. [Pg.184]

The comparison of the 2D plot of a graft copolymer with the 2D plot of the precursor PEO shows clearly that the graft copolymer sample does not contain any free PEO. This result was also confirmed by MALDI-TOF mass spectrometry. Next to the requirement of being PEO free, the PEO-g-PVA copolymers showed a good combination of film-forming properties, a fast dissolution, and a low solution viscosity in water. The phase separated morphology, as demonstrated by TEM, DSC, DMTA, and WAXS experiments, provided the PEO-g-PVA copolymers with relatively constant mechanical properties. [Pg.403]

The plots of h/h vs. copolymer concentration also reveal differences in the micropolarity of the hydrophobic domains created upon association of the various copolymers in water. A qualitative assessment of this property is given by the h/h value determined in the copolymer solutions of highest concentration when the plateau value is attained (Fig. 25). This value depended significantly on the grafting level the solution of the most densely grafted copolymer yielded the lowest h/h value (1.40) and the pure homopolymer the highest. In all cases, this value is higher than the value (1.20) recorded for micellar solutions of the macromonomer. It can be concluded... [Pg.67]

Several block and graft copolymers have been shown to form stable aggregates under thermodynamically poor solvent conditions, as a result of differences in the solubility of different parts of a macromolecule. Whereas in a good solvent the experimentally measured value of A2 for a copolymer represents the balance of all the multiple interactions, under thermodynamically poor conditions A2 is mainly determined by the interaction of the groups situated on the polymer-solvent interface. Groups which form the hydrophobic core and are not in a contact with the solvent do not contribute significantly to the solution properties of the copolymer. [Pg.88]

Macromonomers provide an easy access to a large number of functional copolymers and controlled topologies, such as comb-like, star-like, bottle brush, and graft copolymers. These types exhibit exceptional solution or solid state properties compared to their linear homologues. [Pg.6]

The properties of cellulosic graft copolymers have been studied to a considerable extent but mainly in the form of grafted fibers or films of ill-defined composition. However, a few properties have been measured on well defined grafts (147). It was found that solutions of cellulose acetate-polystyrene grafts in dimethyl formamide are less tolerant to the addition of polystyrene than cellulose acetate itself. This result was attributed to the greater coil expansion in the case of the graft copolymer. On the other hand, the tolerance of the grafts to each homo-... [Pg.144]

Selb, X and Gallot, Y. (1980c). Copolymers with polyvinylpyridinium blocks or grafts synthesis and properties in solution. In Polymeric amines and ammonium salts, (ed. [Pg.217]

The characterization and solution properties of graft copolymers in which the backbone polymers are chemically different from the branches require many difficulties to be overcome, from the viewpoints of the determination of MW, the branching rate, and their distributions. [Pg.149]

Abstract Polyelectrolyte block copolymers form micelles and vesicles in aqueous solutions. Micelle formation and micellar structure depends on various parameters like block lengths, salt concentration, pH, and solvent quality. The synthesis and properties of more complicated block and micellar architectures such as triblock- and graft copolymers, Janus micelles, and core-shell cylinder brushes are reviewed as well. Investigations reveal details of the interactions of polyelectrolyte layers and electro-steric stabilization forces. [Pg.173]

Poly( ethylene oxide)-block-poly (propylene oxide)-hZock-poly(ethylene oxide)-g-poly(acrylic acid) (PEO-fc-PPO-fc-PEO-g-PAA, Pluronic-PAA) graft copolymers were synthesized by free radical grafting copolymerization of acrylic acid monomers onto PEO-h-PPO-h-PEO (Pluronic F127) and the aqueous solution properties were characterized by Bromberg [133, 134]. Chiu et al. [135] reported on the micellization of (non-ionic) poly(stearyl methacrylate)-gra/f-poly(ethylene glycol) graft copolymers. [Pg.204]

Graft copolymerization reactions of fibrous cellulose with vinyl monomers were initiated at free radical sites formed on the cellulose molecule by interaction with radiation, by reaction with Ce4+ ions in acidic solution, or by H abstraction by OH radicals formed by reaction of Fe2+ ions with H202 in aqueous solution. The effects of experimental conditions on the location of these sites on the cellulose molecule and on the reactions were studied by ESR spectroscopy. The molecular weights of the grafted copolymers and the distribution of the polymers within the fibrous cellu-losic structure were determined. Some of the properties of the copolymers are discussed. [Pg.591]

The modification of the properties of cotton cellulosic textile products, through free radical-initiated graft copolymerization reactions with vinyl monomers, has been investigated at the Southern Laboratory for a number of years (6, 9). In this chapter, we summarize the basic mechanisms and principles involved in free radical reactions of cellulose, initiated by high energy radiation, ceric ion in acidic solution, and aqueous solutions of ferrous ion and hydrogen peroxide. Some of the properties of fibrous cotton cellulose graft copolymers are also presented. [Pg.591]


See other pages where Graft copolymer solution properties is mentioned: [Pg.133]    [Pg.268]    [Pg.647]    [Pg.130]    [Pg.75]    [Pg.183]    [Pg.871]    [Pg.38]    [Pg.37]    [Pg.39]    [Pg.47]    [Pg.54]    [Pg.54]    [Pg.68]    [Pg.105]    [Pg.383]    [Pg.277]    [Pg.37]    [Pg.38]    [Pg.123]    [Pg.990]    [Pg.30]    [Pg.105]    [Pg.23]    [Pg.156]    [Pg.384]    [Pg.42]    [Pg.582]    [Pg.290]    [Pg.84]    [Pg.289]    [Pg.290]    [Pg.70]    [Pg.90]   
See also in sourсe #XX -- [ Pg.267 ]




SEARCH



Copolymer solutions

Graft copolymer, properties

Graft copolymers

Graft property

Grafted copolymers

Grafted properties

Grafting copolymers

Solute property

Solution properties

© 2024 chempedia.info