Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Gases continued phase

Horizontal separators normally are more efficient at handling large volumes of gas than vertical types since liquid droplets fall perpendicular to the gas flow in the gravity settling section, and are more easily settled out of the gas continuous phase. Also, since interface area is larger in a horizontal separator, it is easier for gas bubbles, which come out of solution as liquid approaches equilibrium, to reach the vapor space. [Pg.93]

Settling. Liquid drops will settle in the gravity settling section at a velocity determined by equating gravity force on the drop with drag force caused by its motion relative to the gas continuous phase. [Pg.94]

Gas continuous phase. Examples for liquid-in-gas dispersions are the mist and the clouds. Smoke, dust and some aerosols are typical solid-in-gas dispersions (Britter and Griffiths 1982, Arya 1999). [Pg.1]

Drilling fluids are classified as to the nature of the continuous phase gas, water, oil, or synthetic. Within each classification are divisions based on composition or chemistry of the fluid or the dispersed phase. [Pg.174]

The baffle plate operates with liquid dispersed and gas as the continuous phase and is used primarily in heat-transfer apphcations. [Pg.1371]

The term froth in Fig. 14-22 suggests aeration in which the hquid phase is continuous. Under certain conditions there can be an inversion to a gas-continuous regime, or spray. The spray has its phase boundaries equivalent to the boundaries for froth shown in Fig. 14-22. [Pg.1371]

A stable operating condition beyond flooding (region CD or C D ) for nonextended surface packing with the liquid as the continuous phase and the gas as the dispersed phase has been reported by Lerner and Grove [Ind. Eng. Chem., 43, 216 (1951)] and Teller [Chem. Eng., 61(9), 168 (1954)]. [Pg.1387]

Down spouts (or up spouts) are best set flush with the plate from which they lead, with no weir as in gas-hquid contact. The velocity of the continuous phase in the down spout V, which sets the down-spout cross section, should be set at a value lower than the terminal velocity of some arbitrarily small droplet of dispersed phase, say, 0.08 or 0.16 cm i M or Mfi in) in diameter otherwise, recirculation of entrained dispersed phase around a plate will result in flooding. The down spouts should extend beyond the accumulated layer of dispersed phase on the plate. [Pg.1480]

The term three-phase fluidization requires some explanation, as it can be used to describe a variety of rather different operations. The three phases are gas, liquid and particulate solids, although other variations such as two immiscible liquids and particulate solids may exist in special applications. As in the case of a fixed-bed operation, both co-current and counter- current gas-liquid flow are permissible and, for each of these, both bubble flow, in which the liquid is the continuous phase and the gas dispersed, and trickle flow, in which the gas forms a continuous phase and the liquid is more or less dispersed, takes place. A well established device for countercurrent trickle flow, in which low-density solid spheres are fluidized by an upward current of gas and irrigated by a downward flow of liquid, is variously known as the turbulent bed, mobile bed and fluidized packing contactor, or the turbulent contact absorber when it is specifically used for gas absorption and/or dust removal. Still another variation is a three-phase spouted bed contactor. [Pg.486]

An important mixing operation involves bringing different molecular species together to obtain a chemical reaction. The components may be miscible liquids, immiscible liquids, solid particles and a liquid, a gas and a liquid, a gas and solid particles, or two gases. In some cases, temperature differences exist between an equipment surface and the bulk fluid, or between the suspended particles and the continuous phase fluid. The same mechanisms that enhance mass transfer by reducing the film thickness are used to promote heat transfer by increasing the temperature gradient in the film. These mechanisms are bulk flow, eddy diffusion, and molecular diffusion. The performance of equipment in which heat transfer occurs is expressed in terms of forced convective heat transfer coefficients. [Pg.553]

Homogeneous reactions are those in which the reactants, products, and any catalysts used form one continuous phase (gaseous or liquid). Homogeneous gas phase reactors are almost always operated continuously, whereas liquid phase reactors may be batch or continuous. Tubular (pipeline) reactors arc normally used for homogeneous gas phase reactions (e.g., in the thermal cracking of petroleum of dichloroethane lo vinyl chloride). Both tubular and stirred tank reactors are used for homogeneous liquid phase reactions. [Pg.135]

Is believed to be a froth regime (liquid in continuous phase above the tray and gas present as bubbles in the liquid) phenomenon rather than a spray regime (gas in continuous phase above the tray and liquid present... [Pg.195]

Foam is gas-liquid dispersion in which the liquid is the continuous phase and the gas is the discontinuous phase. The first use of foam in drilling was reported in 1964. [Pg.680]

An interesting and practically valuable result was obtained in [21] for PE + N2 melts, and in [43] for PS + N2 melts. The authors classified upper critical volumetric flow rate and pressure with reference to channel dimensions x Pfrerim y Qf"im-Depending on volume gas content

channel entrance (pressure of 1 stm., experimental temperature), x and y fall, in accordance with Eq. (24), to tp 0.85. At cp 0.80, in a very narrow interval of gas concentrations, x and y fall by several orders. The area of bubble flow is removed entirely. It appears that at this concentration of free gas, a phase reversal takes place as the polymer melt ceases to be a continuous phase (fails to form a continuous cluster , in flow theory terminology). The theoretical value of the critical concentration at which the continuous cluster is formed equals 16 vol. % (cf., for instance, Table 9.1 in [79] and [80]). An important practical conclusion ensues it is impossible to obtain extrudate with over 80 % of cells without special techniques. In other words, technology should be based on a volume con-... [Pg.119]

In the first class, the particles form a fixed bed, and the fluid phases may be in either cocurrent or countercurrent flow. Two different flow patterns are of interest, trickle flow and bubble flow. In trickle-flow reactors, the liquid flows as a film over the particle surface, and the gas forms a continuous phase. In bubble-flow reactors, the liquid holdup is higher, and the gas forms a discontinuous, bubbling phase. [Pg.72]

The two models commonly used for the analysis of processes in which axial mixing is of importance are (1) the series of perfectly mixed stages and (2) the axial-dispersion model. The latter, which will be used in the following, is based on the assumption that a diffusion process in the flow direction is superimposed upon the net flow. This model has been widely used for the analysis of single-phase flow systems, and its use for a continuous phase in a two-phase system appears justified. For a dispersed phase (for example, a bubble phase) in a two-phase system, as discussed by Miyauchi and Vermeulen, the model is applicable if all of the dispersed phase at a given level in a column is at the same concentration. Such will be the case if the bubbles coalesce and break up rapidly. However, the model is probably a useful approximation even if this condition is not fulfilled. It is assumed in the following that the model is applicable for a continuous as well as for a dispersed phase in gas-liquid-particle operations. [Pg.87]

Fig. 2. Typical data for the bubble-size distribution in a gas-liquid dispersion produced in a new type of contactor without a pressure drop per stage (G4). Dispersed phase air. Continuous phase water. The solid lines were calculated from Eq. (17) and Eq. (258) or (260). [after Gal-Or and Hoelscher (G5)]. Fig. 2. Typical data for the bubble-size distribution in a gas-liquid dispersion produced in a new type of contactor without a pressure drop per stage (G4). Dispersed phase air. Continuous phase water. The solid lines were calculated from Eq. (17) and Eq. (258) or (260). [after Gal-Or and Hoelscher (G5)].
For example, for equal volumes of gas and liquid ( =0.5), Eq. (266) predicts that the Stokes velocity (which is already very small for relatively fine dispersions) should be reduced further by a factor of 38 due to hindering effects of its neighbor bubbles in the ensemble. Hence in the domain of high values and relatively fine dispersions, one can assume that the particles are completely entrained by the continuous-phase eddies, resulting in a negligible convective transfer, although this does not preclude the existence of finite relative velocities between the eddies themselves. [Pg.382]

Mass transfer in the continuous phase is less of a problem for liquid-liquid systems unless the drops are very small or the velocity difference between the phases is small. In gas-liquid systems, the resistance is always on the liquid side, unless the reaction is very fast and occurs at the interface. The Sherwood number for mass transfer in a system with dispersed bubbles tends to be almost constant and mass transfer is mainly a function of diffusivity, bubble size, and local gas holdup. [Pg.347]

Annular flow. In annular flow there is a continuous liquid in an annulus along the wall and a continuous gas/vapor phase in the core. The gas core may contain entrained droplets—dispersed mist—while the discontinuous gas phase appears as bubbles in the annulus. This flow pattern occurs at high void fractions and high flow velocities. A special case of annular flow is that where there is a gas/vapor film along the wall and a liquid core in the center. This type is called inverse annular flow and appears only in subcooled stable film boiling (see Sec. 3.4.6.3)... [Pg.152]

Chemically, the preparation of a "stable" foam or emulsion requires the use of a surfactant to aid in dispersion of the internal phase and prevent the collapse of the foam (or emulsion) into separate bulk phases. The selection of a surfactant is made on the basis of severity of conditions to be encountered, the gas to be entrained (N2, C02, LPG, CH, or air), the continuous phase liquid (water, alcohol, or oil), and half-life of foam stability desired. [Pg.90]

The subscripts m, L, S, and G will represent the local two-phase mixture, liquid phase, solid phase and gas phase, respectively. The definitions below are given in terms of solid-liquid (S-L) mixtures, where the solid is the more dense distributed phase and the liquid the less dense continuous phase. The same definitions can be applied to gas-liquid (G-L) flows if the subscript S is replaced by L (the more dense phase) and the L by G (the less dense phase). The symbol

volume fraction of the more dense phase, and s is the volume fraction of the less dense phase (obviously (p = 1 — e). An important distinction is made between ([Pg.444]


See other pages where Gases continued phase is mentioned: [Pg.380]    [Pg.78]    [Pg.174]    [Pg.615]    [Pg.615]    [Pg.1369]    [Pg.1380]    [Pg.1441]    [Pg.1442]    [Pg.1488]    [Pg.263]    [Pg.311]    [Pg.334]    [Pg.403]    [Pg.183]    [Pg.222]    [Pg.533]    [Pg.533]    [Pg.230]    [Pg.79]    [Pg.250]    [Pg.265]    [Pg.385]    [Pg.17]    [Pg.25]    [Pg.30]    [Pg.350]    [Pg.90]    [Pg.461]   


SEARCH



Gas continued

Gas phase, continuous

Gas phase, continuous

© 2024 chempedia.info