Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fuel electrolytes

Type Fuel Electrolyte T (°C) Charge carrier Anode reaction Cathode reaction... [Pg.2502]

Variety Fuel Electrolyte Temperature Efficiency Applications... [Pg.85]

Vertically layered streaming, T shape, channel length = 48 mm, channel width = 3.3 mm, Pt/Ru and Pt nanoparticles in Naflon-based ink solution brushed on carbon paper as electrodes, graphite plates as current collectors, implementing of nano-porous separator at the fuel-electrolyte interfece, running at 80 °C with O2 supply of 50 seem, hot-pressed thin film of Nation over cathode to alleviate fuel crossover effects... [Pg.230]

The comparison of various techniques used for the analyses of methanol and ethanol electro-oxidation at anode and the results are given in Tables 2 to 3 for methanol and ethanol, respectively. The most commonly used technique in electrochemical studies of fuel cell reactions has been cyclic voltammetry. The cyclic voltammetry is used to study the redox behavior of electrodes in fuel-electrolyte solutions (Bard et al. 2001). The cyclic voltammogram helps to identify the reaction intermediates, poisoning species, reaction mechanism, suitable combination of electrode material and electrolyte/fuel mixtures, such that the formation of poisoning species is prevented. Prabhuram et al. (1998) investigated methanol oxidation on unsupported platinum electrodes in alkaline condition (Table 2). The cyclic voltammograms (CVs) were recorded in... [Pg.168]

Fig. 14 (a) Schematic diagram of direct alcohol or borohydride alkaline fuel cell. 1. Fuel-electrolyte mixture storage 2. Exhausted-fuel-electrolyte mixture storage 3, 4. Peristaltic pump 5. Load 6. Anode terminal 7. Cathode terminal 8. Air 9. Cathode electrode 10. Anode electrode 11. Fuel and electrolyte mixture 12. Magnetic stirrer 13. Anode shield, (b) Experimental set-up for direct alchol or sodium borohydride alkaline fuel cell. [Pg.179]

Figures 18 to 20 show that the equilibrium cell voltage increases with the increase in fuel concentration. Although the cell performance increases initially but it does not increase proportionally with further increase in fuel concentration. This is because the increase in fuel concentration leads to the decrease in hydroxyl ion mobility. The hydrolysis reaction dominates with the increase in sodium borohydride concentration and thus the performance increases rather slowly. Further at higher concentration of NaBH4, viscosity of the fuel-electrolyte mixture increases leading to the rapid increase in concentration polarization at higher current densities and the performance decreases (Fig. 20). The maximum power density of 16.2 and 13.8 mW cm" were obtained for 3 M methanol and ethanol concentrations while 22.5 mW cm" for 2 M sodium borohydride. The fuel cell was operated at 25°C, 3 M KOH concentration and with 1 mg cm " of anode catalyst (Pt-black) loading catalyst and 3 mg cm" of cathode (Mn02) loading, respectively. Figures 18 to 20 show that the equilibrium cell voltage increases with the increase in fuel concentration. Although the cell performance increases initially but it does not increase proportionally with further increase in fuel concentration. This is because the increase in fuel concentration leads to the decrease in hydroxyl ion mobility. The hydrolysis reaction dominates with the increase in sodium borohydride concentration and thus the performance increases rather slowly. Further at higher concentration of NaBH4, viscosity of the fuel-electrolyte mixture increases leading to the rapid increase in concentration polarization at higher current densities and the performance decreases (Fig. 20). The maximum power density of 16.2 and 13.8 mW cm" were obtained for 3 M methanol and ethanol concentrations while 22.5 mW cm" for 2 M sodium borohydride. The fuel cell was operated at 25°C, 3 M KOH concentration and with 1 mg cm " of anode catalyst (Pt-black) loading catalyst and 3 mg cm" of cathode (Mn02) loading, respectively.
Fuels which have been used include hydrogen, hydrazine, methanol and ammonia, while oxidants are usually oxygen or air. Electrolytes comprise alkali solutions, molten carbonates, solid oxides, ion-exchange resins, etc. [Pg.183]

Petroleum coke is an excellent fuel, and that is its main use, especially for the coke from fluid coking". There are some other markets that have to do with calcined coke electrodes for aluminum production or for all other electrolytic cells, carbons for electro-mechanical equipment, graphite, and pigments. [Pg.292]

This reaction has been carefully studied with the aim of obtaining the enthalpy of combustion as electrical energy, and successful hydrazine-air fuel cells have been developed using potassium hydroxide as the electrolyte. The hydrazine fuel, however, has the disadvantage that it is expensive and poisonous. [Pg.224]

AFC = all line fuel ceU MCFC = molten carbonate fuel ceU PAFC = phosphoric acid fuel ceU PEFC = polymer electrolyte fuel ceU and SOFC = solid oxide fuel ceU. [Pg.577]

In low temperature fuel ceUs, ie, AEG, PAEC, PEEC, protons or hydroxyl ions are the principal charge carriers in the electrolyte, whereas in the high temperature fuel ceUs, ie, MCEC, SOEC, carbonate and oxide ions ate the charge carriers in the molten carbonate and soHd oxide electrolytes, respectively. Euel ceUs that use zitconia-based soHd oxide electrolytes must operate at about 1000°C because the transport rate of oxygen ions in the soHd oxide is adequate for practical appHcations only at such high temperatures. Another option is to use extremely thin soHd oxide electrolytes to minimize the ohmic losses. [Pg.577]

Polymer Electrolyte Fuel Cell. The electrolyte in a PEFC is an ion-exchange (qv) membrane, a fluorinated sulfonic acid polymer, which is a proton conductor (see Membrane technology). The only Hquid present in this fuel cell is the product water thus corrosion problems are minimal. Water management in the membrane is critical for efficient performance. The fuel cell must operate under conditions where the by-product water does not evaporate faster than it is produced because the membrane must be hydrated to maintain acceptable proton conductivity. Because of the limitation on the operating temperature, usually less than 120°C, H2-rich gas having Htde or no ([Pg.578]

Alkaline Fuel Cell. The electrolyte ia the alkaline fuel cell is concentrated (85 wt %) KOH ia fuel cells that operate at high (- 250° C) temperature, or less concentrated (35—50 wt %) KOH for lower (<120° C) temperature operation. The electrolyte is retained ia a matrix of asbestos (qv) or other metal oxide, and a wide range of electrocatalysts can be used, eg, Ni, Ag, metal oxides, spiaels, and noble metals. Oxygen reduction kinetics are more rapid ia alkaline electrolytes than ia acid electrolytes, and the use of non-noble metal electrocatalysts ia AFCs is feasible. However, a significant disadvantage of AFCs is that alkaline electrolytes, ie, NaOH, KOH, do not reject CO2. Consequentiy, as of this writing, AFCs are restricted to specialized apphcations where C02-free H2 and O2 are utilized. [Pg.579]

Phosphoric Acid Fuel Cell. Concentrated phosphoric acid is used for the electrolyte ia PAFC, which operates at 150 to 220°C. At lower temperatures, phosphoric acid is a poor ionic conductor (see Phosphoric acid and the phosphates), and CO poisoning of the Pt electrocatalyst ia the anode becomes more severe when steam-reformed hydrocarbons (qv) are used as the hydrogen-rich fuel. The relative stabiUty of concentrated phosphoric acid is high compared to other common inorganic acids consequentiy, the PAFC is capable of operating at elevated temperatures. In addition, the use of concentrated (- 100%) acid minimizes the water-vapor pressure so water management ia the cell is not difficult. The porous matrix used to retain the acid is usually sihcon carbide SiC, and the electrocatalyst ia both the anode and cathode is mainly Pt. [Pg.579]

Molten Carbonate Fuel Cell. The electrolyte ia the MCFC is usually a combiaation of alkah (Li, Na, K) carbonates retaiaed ia a ceramic matrix of LiA102 particles. The fuel cell operates at 600 to 700°C where the alkah carbonates form a highly conductive molten salt and carbonate ions provide ionic conduction. At the operating temperatures ia MCFCs, Ni-based materials containing chromium (anode) and nickel oxide (cathode) can function as electrode materials, and noble metals are not required. [Pg.579]

One factor contributing to the inefficiency of a fuel ceU is poor performance of the positive electrode. This accounts for overpotentials of 300—400 mV in low temperature fuel ceUs. An electrocatalyst that is capable of oxygen reduction at lower overpotentials would benefit the overall efficiency of the fuel ceU. Despite extensive efforts expended on electrocatalysis studies of oxygen reduction in fuel ceU electrolytes, platinum-based metals are stiU the best electrocatalysts for low temperature fuel ceUs. [Pg.586]

Fig. 11. Solid polymer electrolyte (SPE) fuel cell (a) cell design and (b) power curve at 25°C. Fig. 11. Solid polymer electrolyte (SPE) fuel cell (a) cell design and (b) power curve at 25°C.
The electrons, Hberated at the anode, travel by electrical cable through the external load, such as an electric motor, to the cathode. If the external circuit is open the reaction is stopped, no fuel is consumed, and no power is generated. The electrolytic reaction, then, is controlled by the load connected to the cell. The overall fuel cell reaction is... [Pg.462]

As can be seen from Eigure 11b, the output voltage of a fuel cell decreases as the electrical load is increased. The theoretical polarization voltage of 1.23 V/cell (at no load) is not actually realized owing to various losses. Typically, soHd polymer electrolyte fuel cells operate at 0.75 V/cell under peak load conditions or at about a 60% efficiency. The efficiency of a fuel cell is a function of such variables as catalyst material, operating temperature, reactant pressure, and current density. At low current densities efficiencies as high as 75% are achievable. [Pg.462]

An emerging electrochemical appHcation of lithium compounds is in molten carbonate fuel ceUs (qv) for high efficiency, low poUuting electrical power generation. The electrolyte for these fuel ceUs is a potassium carbonate—hthium carbonate eutectic contained within a lithium aluminate matrix. The cathode is a Hthiated metal oxide such as lithium nickel oxide. [Pg.225]

The molten carbonate fuel ceU uses eutectic blends of Hthium and potassium carbonates as the electrolyte. A special grade of Hthium carbonate is used in treatment of affective mental (mood) disorders, including clinical depression and bipolar disorders. Lithium has also been evaluated in treatment of schizophrenia, schizoaffective disorders, alcoholism, and periodic aggressive behavior (56). [Pg.225]

In addition, solvent extraction is appHed to the processing of other metals for the nuclear industry and to the reprocessing of spent fuels (see Nuclearreactors). It is commercially used for the cobalt—nickel separation prior to electrowinning in chloride electrolyte. Both extraction columns and mixer-settlers are in use. [Pg.172]

Another important potential appHcation for fuel cells is in transportation (qv). Buses and cars powered by fuel cells or fuel cell—battery hybrids are being developed in North America and in Europe to meet 2ero-emission legislation introduced in California. The most promising type of fuel cell for this appHcation is the SPEC, which uses platinum-on-carbon electrodes attached to a soHd polymeric electrolyte. [Pg.173]


See other pages where Fuel electrolytes is mentioned: [Pg.94]    [Pg.120]    [Pg.231]    [Pg.350]    [Pg.172]    [Pg.185]    [Pg.94]    [Pg.120]    [Pg.231]    [Pg.350]    [Pg.172]    [Pg.185]    [Pg.213]    [Pg.227]    [Pg.577]    [Pg.577]    [Pg.578]    [Pg.579]    [Pg.579]    [Pg.579]    [Pg.580]    [Pg.580]    [Pg.581]    [Pg.583]    [Pg.585]    [Pg.585]    [Pg.585]    [Pg.586]    [Pg.174]    [Pg.292]    [Pg.460]    [Pg.461]    [Pg.227]    [Pg.173]   
See also in sourсe #XX -- [ Pg.344 , Pg.345 ]

See also in sourсe #XX -- [ Pg.45 ]

See also in sourсe #XX -- [ Pg.1087 ]




SEARCH



© 2024 chempedia.info