Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fuel polymer electrolyte

Kim, H. J., et al., Pf and PtRh nanowire electrocatalystsfor cyclohexane-fueled polymer electrolyte membrane fuel cell. Electrochemistry Communications, 2(X)9,11(2), 446-449. [Pg.181]

Kim HJ, Kim YS, Seo MH, Choi SM, Kim WB (2009) Pt and PtRh nanowire electrocatalysts for cyclohexane-fueled polymer electrolyte membrane fuel cell. Electrochem Commun 11(2) 446 49... [Pg.62]

FIGURE 2.12 Schematic of hydrogen and methanol fueled polymer electrolyte membrane fuel cell (PEMFC) with a proton-conducting membrane. [Pg.91]

AFC = all line fuel ceU MCFC = molten carbonate fuel ceU PAFC = phosphoric acid fuel ceU PEFC = polymer electrolyte fuel ceU and SOFC = solid oxide fuel ceU. [Pg.577]

Polymer Electrolyte Fuel Cell. The electrolyte in a PEFC is an ion-exchange (qv) membrane, a fluorinated sulfonic acid polymer, which is a proton conductor (see Membrane technology). The only Hquid present in this fuel cell is the product water thus corrosion problems are minimal. Water management in the membrane is critical for efficient performance. The fuel cell must operate under conditions where the by-product water does not evaporate faster than it is produced because the membrane must be hydrated to maintain acceptable proton conductivity. Because of the limitation on the operating temperature, usually less than 120°C, H2-rich gas having Htde or no ([Pg.578]

Fig. 11. Solid polymer electrolyte (SPE) fuel cell (a) cell design and (b) power curve at 25°C. Fig. 11. Solid polymer electrolyte (SPE) fuel cell (a) cell design and (b) power curve at 25°C.
As can be seen from Eigure 11b, the output voltage of a fuel cell decreases as the electrical load is increased. The theoretical polarization voltage of 1.23 V/cell (at no load) is not actually realized owing to various losses. Typically, soHd polymer electrolyte fuel cells operate at 0.75 V/cell under peak load conditions or at about a 60% efficiency. The efficiency of a fuel cell is a function of such variables as catalyst material, operating temperature, reactant pressure, and current density. At low current densities efficiencies as high as 75% are achievable. [Pg.462]

Refractive Index. The effect of mol wt (1400-4000) on the refractive index (RI) increment of PPG in ben2ene has been measured (167). The RI increments of polyglycols containing aUphatic ether moieties are negative drj/dc (mL/g) = —0.055. A plot of RI vs 1/Af is linear and approaches the value for PO itself (109). The RI, density, and viscosity of PPG—salt complexes, which maybe useful as polymer electrolytes in batteries and fuel cells have been measured (168). The variation of RI with temperature and salt concentration was measured for complexes formed with PPG and some sodium and lithium salts. Generally, the RI decreases with temperature, with the rate of change increasing as the concentration increases. [Pg.354]

Polymer electrolyte fuel cells can be obtained from several developers. These fuel cells deliver about 5 kW of power and measure 30 by 30 by 70 cm (12 X 12 X 28 in.). For the large produc tion volume anticipated if the automotive industry were to adopt the PEFC, a system cost of less than 100/kW may be reached eventually. [Pg.2412]

The most promising fuel cell for transportation purposes was initially developed in the 1960s and is called the proton-exchange membrane fuel cell (PEMFC). Compared with the PAFC, it has much greater power density state-of-the-art PEMFC stacks can produce in excess of 1 kWA. It is also potentially less expensive and, because it uses a thin solid polymer electrolyte sheet, it has relatively few sealing and corrosion issues and no problems associated tvith electrolyte dilution by the product water. [Pg.528]

Gottesfeld, S., and Zawodzinski, T. A. (1998). Polymer Electrolyte Fuel Cells, Advances m Electrochemical Science and Engineering, ed. R. Alkire et al. NewYork Wiley. [Pg.644]

Ren, X. Springer, T. E. and Gottesfeld, S. (1998). Direct Methanol Fuel Cell Transport Properties of the Polymer Electrolyte Membrane and Cell Performance. Vol. 98-27. Proc. 2nd International Symposium on Proton Conducting Membrane Euel Cells. Pennington, NJ Electrochemical Society. [Pg.644]

A membrane ionomer, in particular a polyelectrolyte with an inert backbone such as Nation . They require a plasticizer (typically water) to achieve good conductivity levels and are associated primarily, in their protonconducting form, with solid polymer-electrolyte fuel cells. [Pg.500]

The concept of a promoter can also be extended to the case of substances which enhance the performance of an electrocatalyst by accelerating the rate of an electrocatalytic reaction. This can be quite important for the performance, e.g., of low temperature (polymer electrolyte membrane, PEM) fuel cells where poisoning of the anodic Pt electrocatalyst (reaction 1.7) by trace amounts of strongly adsorbed CO poses a serious problem. Such a promoter which when added to the Pt electrocatalyst would accelerate the desired reaction (1.5 or 1.7) could be termed an electrocatalytic promoter, or electropromoter, but this concept will not be dealt with in the present book, where the term promoter will always be used for substances which enhance the performance of a catalyst. [Pg.10]

Electro-catalysts which have various metal contents have been applied to the polymer electrolyte membrane fuel cell(PEMFC). For the PEMFCs, Pt based noble metals have been widely used. In case the pure hydrogen is supplied as anode fuel, the platinum only electrocatalysts show the best activity in PEMFC. But the severe activity degradation can occur even by ppm level CO containing fuels, i.e. hydrocarbon reformates[l-3]. To enhance the resistivity to the CO poison of electro-catalysts, various kinds of alloy catalysts have been suggested. Among them, Pt-Ru alloy catalyst has been considered one of the best catalyst in the aspect of CO tolerance[l-3]. [Pg.637]

Development of a CO remover employing microchannel reactor for polymer electrolyte fuel cells... [Pg.653]

A miniature methanol steam reformer for polymer electrolyte fuel cell... [Pg.657]

The principle of the fuel cell was first demonstrated by Grove in 1839 [W. R. Grove, Phil. Mag. 14 (1839) 137]. Today, different schemes exist for utilizing hydrogen in electrochemical cells. We explain the two most important, namely the Polymer Electrolyte Membrane Fuel Cell (PEMFC) and the Solid Oxide Fuel Cell (SOFC). [Pg.341]

Figure 8.31. Principle of a Polymer Electrolyte Membrane (PEM) fuel cell. A Nation membrane sandwiched between electrodes separates hydrogen and oxygen. Hydrogen is oxidized into protons and electrons at the anode on the left. Electrons flow through the outer circuit, while protons diffuse through the... Figure 8.31. Principle of a Polymer Electrolyte Membrane (PEM) fuel cell. A Nation membrane sandwiched between electrodes separates hydrogen and oxygen. Hydrogen is oxidized into protons and electrons at the anode on the left. Electrons flow through the outer circuit, while protons diffuse through the...
The electrocatalytic oxidation of methanol has been widely investigated for exploitation in the so-called direct methanol fuel cell (DMFC). The most likely type of DMFC to be commercialized in the near future seems to be the polymer electrolyte membrane DMFC using proton exchange membrane, a special form of low-temperature fuel cell based on PEM technology. In this cell, methanol (a liquid fuel available at low cost, easily handled, stored, and transported) is dissolved in an acid electrolyte and burned directly by air to carbon dioxide. The prominence of the DMFCs with respect to safety, simple device fabrication, and low cost has rendered them promising candidates for applications ranging from portable power sources to secondary cells for prospective electric vehicles. Notwithstanding, DMFCs were... [Pg.317]

Dodolet JP, Cote R, Faubert G, Denes G, Guay D, Bertrand P (1998) Iron catalysts prepared by high-temperature pyrolysis of tetraphenylporphyrins adsorbed on carbon black for oxygen reduction in polymer electrolyte fuel cells. Electrochim Acta 43 341-353... [Pg.342]

Membrane-type fuel cells. The electrolyte is a polymeric ion-exchange membrane the working temperatures are 60 to 100°C. Such systems were first used in Gemini spaceships. These fuel cells subsequently saw a rather broad development and are known as (solid) polymer electrolyte or proton-exchange membrane fuel cells (PEMFCs). [Pg.362]

Fuel cells (hydrogen-oxygen, hydrogen-air, methanol-air) and industrial electrolysis (water, chlor-alkali) using ion-exchange membranes are the most demanding applications for the membranes. In these apphcations, the membranes have often been designated as SPE, which can be read as solid polymer electrolyte or solid... [Pg.455]

Gubler, L., S. A. Giirsel, and G. G. Scherer, Radiation-grafted membranes for polymer electrolyte fuel cells. Journal Fuel Cells, August 2005. [Pg.466]

Electrocatalysis of Oxygen Reduction in Polymer Electrolyte Fuel Cells A Brief History and a Critical Examination of Present Theory and Diagnostics... [Pg.2]

ELECTROCATALYSIS OF OXYGEN REDUCTION IN POLYMER ELECTROLYTE FUEL CELLS... [Pg.3]


See other pages where Fuel polymer electrolyte is mentioned: [Pg.92]    [Pg.162]    [Pg.92]    [Pg.162]    [Pg.577]    [Pg.578]    [Pg.585]    [Pg.460]    [Pg.2357]    [Pg.2411]    [Pg.453]    [Pg.503]    [Pg.182]    [Pg.78]    [Pg.605]    [Pg.625]    [Pg.637]    [Pg.645]    [Pg.653]    [Pg.657]    [Pg.111]    [Pg.336]    [Pg.2]   
See also in sourсe #XX -- [ Pg.4 , Pg.7 , Pg.157 , Pg.196 ]




SEARCH



© 2024 chempedia.info