Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

FTICR spectrometry

In general, the wave functions (at 6-31G //6-31G, MP2/6-31G //6-31G, and MP2/6-31G //MP2/6-31G levels) used to calculate the PA s yields similar values, approximately in a range of 2 kcal/mol, but MP2/6-31G 7/6-31G gives closer values to those of MP2/6-31G //MP2/6-31G. Theoretical PA s show good values in comparison with the known PA values coming from FTICR spectrometry. PA s correlate quite well with the proton association constants. This way to calculate PA s could be useful for comparative purposes in a series of molecules, specially if an amine basic centre is involved. [Pg.391]

Pitsenberger, C. C., Easterling, M. L., and Amster, I. J., "Effects of Capacitive Coupling on Ion Remeasurement Using Quadrupolar Excitation in High-Resolution FTICR Spectrometry," Anal. Chem., 68, 4409M413,1996. [Pg.426]

Pitsenberger, C.C., Easterling, M.L., and Amster, I.J. (1996) Effects of capacitive coupling on ion remeasurement using quadrupolar excitation in high-resolution FTICR spectrometry. Anal. [Pg.359]

FTICR. Fourier-transform ion cyclotron resonance GC/IRMS. gas chromatography isotope ratio mass spectrometry... [Pg.445]

Resolution does not affect the accuracy of the individual accurate mass measurements when no separation problem exists. When performing accurate mass measurements on a given component in a mixture, it may be necessary to raise the resolution of the mass spectrometer wherever possible. Atomic composition mass spectrometry (AC-MS) is a powerful technique for chemical structure identification or confirmation, which requires double-focusing magnetic, Fourier-transform ion-cyclotron resonance (FTICR) or else ToF-MS spectrometers, and use of a suitable reference material. The most common reference materials for accurate mass measurements are perfluorokerosene (PFK), perfluorotetrabutylamine (PFTBA) and decafluorotriph-enylphosphine (DFTPP). One of the difficulties of high-mass MS is the lack of suitable calibration standards. Reference inlets to the ion source facilitate exact mass measurement. When appropriately calibrated, ToF mass... [Pg.356]

Figure 6.17 Temperature-resolved in-source pyrolysis FTICR-MS of flame-retarded polystyrene (56 spectra with a sampling interval of 1.1 s) from 300 K to 1200K. After Heeren and Boon [224], Reprinted from International Journal of Mass Spectrometry and Ion Processes, 157/158, R.M.A. Heeren and J.J. Boon, 391-403, Copyright (1996), with permission from Elsevier... Figure 6.17 Temperature-resolved in-source pyrolysis FTICR-MS of flame-retarded polystyrene (56 spectra with a sampling interval of 1.1 s) from 300 K to 1200K. After Heeren and Boon [224], Reprinted from International Journal of Mass Spectrometry and Ion Processes, 157/158, R.M.A. Heeren and J.J. Boon, 391-403, Copyright (1996), with permission from Elsevier...
Currently PCR and mass spectrometry are performed by two separate instruments. However, there is no reason why PCR followed by simple automated cleanup and mass spectrometry cannot be incorporated into a single integrated instrument. Essentially every configuration of the modern ESI mass spectrometer has been used successfully for the analysis of PCR products, from the highest to the lowest resolution involving. Fourier transform ion cyclotron resonance (FTICR), triple quadrupole, quadrupole-time of flight (Q-TOF), and ion trap.22-24 MS discriminates between two structurally related PCR products by MW difference. Mass accuracy is needed to differentiate the... [Pg.28]

Different mass analysers can be combined with the electrospray ionization source to effect analysis. These include magnetic sector analysers, quadrupole filter (Q), quadrupole ion trap (QIT), time of flight (TOF), and more recently the Fourrier transform ion cyclotron resonance (FTICR) mass analysers. Tandem mass spectrometry can also be effected by combining one or more mass analysers in tandem, as in a triple quadrupole or a QTOF. The first analyzer is usually used as a mass filter to select parent ions that can be fragmented and analyzed by subsequent analysers. [Pg.237]

Masselon, C. Tolmechev, A. V. Anderson, G. A. Harkewicz, R. Smith, R. D. Mass measurement errors caused by local frequency perturbations in FTICR mass spectrometry. J. Am. Soc. Mass Spectrom. 2002,13, 99-107. [Pg.299]

Shen, Y., Tolic, N., Zhao, R., Pasa-Tolic, L., Li, L., Berger, S.J., Harkewicz, R., Anderson, G.A., Belov, M.E., Smith, R.D. (2001). High-throughput proteomics using high efficiency multiple-capillary liquid chromatography with on-line high performance ESI FTICR mass spectrometry. Anal. Chem. 73, 3011-3021. [Pg.34]

Kalkhof, S., Haehn, S., Ihling, C., Smyth, N., and Sinz, A. (2005b) Probing laminin self-interaction using isotope-labeled cross-linkers and ESI-FTICR mass spectrometry. Poster, Pierce Biotechnology web site. [Pg.1080]

Sinz, A., Kalkhof, S., and Ihling, C. (2005) Mapping protein interfaces by a trifunctional cross-linker combined with MALDI-TOF and ESI-FTICR mass spectrometry. /. Am. Soc. Mass Spectrom. 16(12), 1921-1931. [Pg.1115]

DGE a AC AMS APCI API AP-MALDI APPI ASAP BIRD c CAD CE CF CF-FAB Cl CID cw CZE Da DAPCI DART DC DE DESI DIOS DTIMS EC ECD El ELDI EM ESI ETD eV f FAB FAIMS FD FI FT FTICR two-dimensional gel electrophoresis atto, 10 18 alternating current accelerator mass spectrometry atmospheric pressure chemical ionization atmospheric pressure ionization atmospheric pressure matrix-assisted laser desorption/ionization atmospheric pressure photoionization atmospheric-pressure solids analysis probe blackbody infrared radiative dissociation centi, 10-2 collision-activated dissociation capillary electrophoresis continuous flow continuous flow fast atom bombardment chemical ionization collision-induced dissociation continuous wave capillary zone electrophoresis dalton desorption atmospheric pressure chemical ionization direct analysis in real time direct current delayed extraction desorption electrospray ionization desorption/ionization on silicon drift tube ion mobility spectrometry electrochromatography electron capture dissociation electron ionization electrospray-assisted laser desorption/ionization electron multiplier electrospray ionization electron transfer dissociation electron volt femto, 1CT15 fast atom bombardment field asymmetric waveform ion mobility spectrometry field desorption field ionization Fourier transform Fourier transform ion cyclotron resonance... [Pg.11]

Principle. The principle of the ion cyclotron resonance was developed in the early 1930s by Lawrence and coworkers [252, 253]. The utilization of the ion cyclotron resonance (ICR) technique for mass spectrometry was introduced around 1950 by Sommer et al. [254, 255], and combination with the Fourier transform (FT) technique was developed by Comisarow and Marshall in 1974 [256], Coupling of external sources to an FTICR analyzer was first done in 1985 [257, 258],... [Pg.58]

Figure 2.19. Schematic of a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (a) and a cylindrical cell (b). Reprinted from A. Westman-Brinkmalm and G. Brinkmalm (2002). In Mass Spectrometry and Hyphenated Techniques in Neuropeptide Research, J. Silberring and R. Ekman (eds.) New York John Wiley Sons, 47-105. With... Figure 2.19. Schematic of a Fourier transform ion cyclotron resonance (FTICR) mass spectrometer (a) and a cylindrical cell (b). Reprinted from A. Westman-Brinkmalm and G. Brinkmalm (2002). In Mass Spectrometry and Hyphenated Techniques in Neuropeptide Research, J. Silberring and R. Ekman (eds.) New York John Wiley Sons, 47-105. With...
B. Bogdanov and R. D. Smith. Proteomics by FTICR Mass Spectrometry Top Down and Bottom Up. Mass Spectrom. Rev., 24(2005) 168-200. [Pg.86]

Octadecyl sulfate sodium salt (Ci8H37-0-S03 Na+) was examined by laser desorption (LD) Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS) in the negative mode resulting in [M - H] ions. Little fragmentation was observed under these conditions [28]. [Pg.342]

The development of mass spectrometric techniques, such as fast atom bombardment mass spectrometry (FAB-MS), ° ° Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS), ° and tandem mass spectrometry (MS"), ° allowed enantiodiscrimination of chiral ion-dipole complexes the gas phase. These techniques and others will be illustrated in detail in the next Section 3. [Pg.155]

Solouki, T. Emmet, M.R. Guan, S. Marshall, A.G. Detection, Number, and Sequence Location of Sulfur-Containing Amino Acids and Disulfide Bridges in Peptides by Ultrahigh-Resolution MALDI-FTICR Mass Spectrometry. Anal. Chem. 1997,69, 1163-1168. [Pg.110]

Instrnments combining several analyzers in sequential order are very common. This combination allows mass spectrometry and mass spectrometry experiments (MS/MS) to be carried out. Modern MS/MS includes many different experiments designed to generate substructural information or to qnantitate componnds at trace levels. A triple quadru-pole mass spectrometer allows one to obtain a daughter ion mass spec-trnm resnlting from the decomposition of a parent ion selected in the first qnadrnpole. The MS/MS experiments using an FTICR or ion trap, however, are carried ont in a time-resolved manner rather than by spatial resolntion. [Pg.515]

R. H. High performance ESI-FTICR mass spectrometry as a high throughput screen to identify RNA-binding ligands. Ahstr Pap Am Chem Soc 2001, 221, ANYL-197. [Pg.337]

In the present review, a new variation on an existing experimental method will be used to show how accurate unimolecular dissociation rate constants can be derived for thermal systems. For example, thermal bimolecular reactions are amenable to study by use of several, now well-known, techniques such as (Fourier transform) ion cyclotron resonance spectrometry (FTICR), flowing afterglow (FA), and high-pressure mass spectrometry (HPMS). In systems where a bimolecular reaction leads to products other than a simple association adduct, the bimolecular reaction can always be thought of as containing a unimolecular... [Pg.43]

More recently, Audier and McMahon have shown that the unimolecular dissociation spectrum of transient ions can be directly obtained from a simple manipulation of a series of FTICR spectra. The data arising from this approach very closely resemble those obtained from metastable dissociations in conventional sector spectrometers (MIKES), and it has been consequently dubbed metastable ion cyclotron resonance (MICR) spectrometry. Very briefly, the method functions as follows ... [Pg.65]

The same group studied the lithium cation basicities of a series of compounds of the general formula R R R PO, i.e. phosphine oxides, phosphinates, phosphonates and phosphates, by using Fourier Transform Ion Cyclotron Resonance (FTTCR) mass spectrometry. A summary of their results is shown in Figure 4. The effect of methyl substitution on LCA as well as the correlation between LCA and PA was also investigated by Taft, Yanez and coworkers on a series of methyldiazoles with an FTICR mass spectrometer. They showed that methyl substituent effects on Li binding energies are practically additive. [Pg.211]

In 1974, Comarisov and Marshall60 developed Fourier transform ion cyclotron resonance mass spectrometry (FTICR-MS). This technique allows mass spectrometric measurements at ultrahigh mass resolution (R = 100000-1000000), which is higher than that of any other type of mass spectrometer and has the highest mass accuracy at attomole detection limits. FTICR-MS is applied today together with soft ionization techniques, such as nano ESI (electrospray ionization) or MALDI (matrix assisted laser/desorption ionization) sources. [Pg.21]

Fourier transform ICR mass spectrometers together with any type of ion source, such as nanoESI, MALDI (or also an inductively coupled plasma ion source) permit mass spectrometric measurements to be performed at ultrahigh mass resolution (R = m/hm = 105—106) with a very low detection limit and the highest possible mass accuracy (Am = 10 3—10 4 Da). In addition, a high mass range is possible and FTICR-MS can be applied for MS/MS experiments.48 A comparison of different separation systems used in inorganic mass spectrometry is presented in Table 3.1. [Pg.97]


See other pages where FTICR spectrometry is mentioned: [Pg.542]    [Pg.16]    [Pg.351]    [Pg.542]    [Pg.16]    [Pg.17]    [Pg.614]    [Pg.35]    [Pg.249]    [Pg.270]    [Pg.1026]    [Pg.38]    [Pg.55]    [Pg.97]    [Pg.335]    [Pg.214]    [Pg.226]    [Pg.431]    [Pg.358]    [Pg.99]    [Pg.22]    [Pg.95]   
See also in sourсe #XX -- [ Pg.456 ]

See also in sourсe #XX -- [ Pg.456 ]




SEARCH



FTICR

Fourier transform ion cyclotron resonance FTICR) mass spectrometry

Mass spectrometry FTICR)

Mass spectrometry electrospray FTICR

© 2024 chempedia.info