Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Friedel-Crafts alkylation catalyst

Carboncations also form from an alkyl halide when a Lewis acid catalyst is used. Aluminum chloride is the commonly used Friedel-Crafts alkylation catalyst. Friedel-Crafts alkylation reactions have been reviewed by Roberts and Khalaf ... [Pg.263]

For example, K-10 has been successfully used as a Friedel-Crafts alkylation catalyst (see Fig. 2.2) [22]. [Pg.51]

Clark, J. H., Kybett, A. P., Macquarrie, D. J., Barlow, S. J., Landon, P. Montmorillonite supported transition metal salts as Friedel-Crafts alkylation catalysts. J. Chem. Soc., Chem. Commun. 1989, 1353-1354. [Pg.589]

In the above process, usually 2 mol of isobutylene react with each mole of cresol in the presence of acidic catalyst. Dilute H2SO4 is the most popular catalyst for both alkylation and dealkylation process. Some of the plants use p-toluene sulfonic acid or even a mixture of sulfuric acid and p-toluene sulfonic acid. It is reliably learnt that at least one plant has been using some quantities of a very strong Friedel Crafts alkylation catalyst—Triflic acid or trifluoromethane... [Pg.44]

Kaolinite supported metal chlorides as Friedel-Crafts alkylation catalysts... [Pg.557]

Impregnation of metal chlorides on to natural kaolinites and its modified forms results in efficient Friedel-Crafts alkylation catalysts. A synergistic interaction between the halide and the surface of support as well as mesopore surface of the support is possible. The present study shows that kaolinite and its metakaolinised acid activated forms are efficient support material with comparable performance to the existing commercial montmorillonite K 10. [Pg.562]

Alone or complexed to MeN02 or Ph2CO as Friedel-Crafts alkylation catalyst to functionalize polystyrene resin with iV-chloromethylphthalimide to produce aminomethylated polymer (for solid phase peptide synthesis), FeCls performs well."... [Pg.268]

Alkylbenzenes and alkyinaphthalenes are produced by the alkylation of benzene or naphthalene with olefins using Friedel-Crafts alkylation catalysts. Their typical properties are summarized in Table 11. One unique feature of these alkylaromatic fluids is their very low pour points. Alkylbenzenes are often mentioned in the patent literature as components for CFC or HCFC lefiigeration compressor oil. Alkyinaphthalenes are used in synthetic automotive engine oil, rotary compressor oils, and other industrial oils. [Pg.126]

Other catalysts which may be used in the Friedel - Crafts alkylation reaction include ferric chloride, antimony pentachloride, zirconium tetrachloride, boron trifluoride, zinc chloride and hydrogen fluoride but these are generally not so effective in academic laboratories. The alkylating agents include alkyl halides, alcohols and olefines. [Pg.509]

Friedel-Crafts alkylation using alkenes has important industrial appHcations. The ethylation of benzene with ethylene to ethylbenzene used in the manufacture of styrene, is one of the largest scale industrial processes. The reaction is done under the catalysis of AlCl in the presence of a proton source, ie, H2O, HCl, etc, although other catalysts have also gained significance. [Pg.551]

Tertiary, benzyl, and aHyhc nitro compounds can also be used as Friedel-Crafts alkylating agents eg, reaction of (CH2)3CN02 (2-nitro-2-methyl propane [594-70-7]) with anisole in the presence of SnCl gives 4-/-butylanisole [5396-38-3] (7). SoHd acids, such as perfluorodecanesulfonic acid [335-77-3], and perfluorooctanesulfonic acid [1763-23-1] have been used as catalysts for regio-selective alkylations (8). [Pg.551]

In addition, boron, aluminum, and gallium tris(triduoromethanesulfonates) (tridates), M(OTf)2 and related perduoroalkanesulfonates were found effective for Friedel-Crafts alkylations under mild conditions (200). These Lewis acids behave as pseudo haUdes. Boron tris(tridate) shows the highest catalytic activity among these catalysts. A systematic study of these catalysts in the alkylation of aromatics such as benzene and toluene has been reported (201). [Pg.564]

Catalysts used in the polymerization of C-5 diolefins and olefins, and monovinyl aromatic monomers, foUow closely with the systems used in the synthesis of aHphatic resins. Typical catalyst systems are AlCl, AIBr., AlCl —HCl—o-xylene complexes and sludges obtained from the Friedel-Crafts alkylation of benzene. Boron trifluoride and its complexes, as weU as TiCl and SnCl, have been found to result in lower yields and higher oligomer content in C-5 and aromatic modified C-5 polymerizations. [Pg.354]

Thermoplastic resins produced from pure monomers such as styrene, alkyl-substituted styrenes, and isobutylene are produced commercially. An advantage of these resins is the fact that they are typically lighter in color than Gardner 1 (water-white) without being hydrogenated. Among the earliest resins in this category were those made from styrene and sold as Piccolastic. Styrene and alkyl-substituted styrenes such as a-methylstyrene are very reactive toward Friedel-Crafts polymerization catalysts. [Pg.355]

The alkylation of pyridine [110-86-1] takes place through nucleophiUc or homolytic substitution because the TT-electron-deficient pyridine nucleus does not allow electrophiUc substitution, eg, Friedel-Crafts alkylation. NucleophiUc substitution, which occurs with alkah or alkaline metal compounds, and free-radical processes are not attractive for commercial appHcations. Commercially, catalytic alkylation processes via homolytic substitution of pyridine rings are important. The catalysts effective for this reaction include boron phosphate, alumina, siHca—alurnina, and Raney nickel (122). [Pg.54]

All lation of Phenols. The approach used to synthesize commercially available alkylphenols is Friedel-Crafts alkylation. The specific procedure typically uses an alkene as the alkylating agent and an acid catalyst, generally a sulfonic acid. Alkene and catalyst interact to form a carbocation and counter ion (5) which interacts with phenol to form a 7T complex (6). This complex is held together by the overlap of the filled TT-orbital of the aromatic... [Pg.58]

All lation. Friedel-Crafts alkylation (qv) of benzene with ethylene or propjiene to produce ethylbenzene [100-41 -4] CgH Q, or isopropylbenzene [98-82-8] (cumene) is readily accompHshed ia the Hquid or vapor phase with various catalysts such as BF (22), aluminum chloride,... [Pg.40]

Alkylation of furan and thiophene has been effected with alkenes and catalysts such as phosphoric acid and boron trifluoride. In general, Friedel-Crafts alkylation of furans or thiophenes is not preparatively useful, partly because of polymerization by the catalyst and partly because of polyalkylation. [Pg.53]

Benzyl and allyl alcohols which can generate stabilized caibocations give Friedel-Crafts alkylation products with mild Lewis acid catalysts such as scandium triflate. ... [Pg.583]

As catalysts Lewis acids such as AICI3, TiCU, SbFs, BF3, ZnCh or FeCl3 are used. Protic acids such as FI2SO4 or FIF are also used, especially for reaction with alkenes or alcohols. Recent developments include the use of acidic polymer resins, e.g. Nafion-Fl, as catalysts for Friedel-Crafts alkylations and the use of asymmetric catalysts. ... [Pg.123]

The methodology of a Lewis acid dissolved in an ionic liquid has been used for Friedel-Crafts alkylation reactions. Song [85] has reported that scandium(III) tri-flate in [BMIM][PFg] acts as an alkylation catalyst in the reaction between benzene and hex-l-ene (Scheme 5.1-55). [Pg.201]

Acidic chloroaluminate ionic liquids have already been described as both solvents and catalysts for reactions conventionally catalyzed by AICI3, such as catalytic Friedel-Crafts alkylation [35] or stoichiometric Friedel-Crafts acylation [36], in Section 5.1. In a very similar manner, Lewis-acidic transition metal complexes can form complex anions by reaction with organic halide salts. Seddon and co-workers, for example, patented a Friedel-Crafts acylation process based on an acidic chloro-ferrate ionic liquid catalyst [37]. [Pg.225]

Ethylene is an active alkylating agent. It can be used to alkylate aromatic compounds using Friedel-Crafts type catalysts. Commercially,... [Pg.210]

Mohanty et al. were the first to introduce pendent r-butyl groups in die polymer backbones. The resulting material was quite soluble in aprotic dipolar solvents.83 The PEEK precursors were prepared under a mild reaction condition at 170°C. The polymer precursor can be converted to PEEK in die presence of Lewis acid catalyst A1C13 via a retro Friedel-Crafts alkylation. Approximately 50% of die rerr-butyl substitutes were removed due to die insolubility of the product in die solvent used. Later, Risse et al. showed diat complete cleavage of f< rf-butyl substitutes could be achieved using a strong Lewis acid CF3SO3H as both die catalyst and the reaction medium (Scheme 6.15).84... [Pg.342]

Naphthalene and other fused ring compounds are so reactive that they react with the catalyst, and therefore tend to give poor yields in Friedel-Crafts alkylation. Heterocyclic rings are also tend to be poor substrates for the reaction. Although some furans and thiophenes have been alkylated, a true alkylation of a pyridine or a quinoline has never been described.However, alkylation of pyridine and other nitrogen heterocycles can be accomplished by a free radical (14-23) and by a nucleophilic method (13-15). [Pg.709]

From what has been said thus far, it is evident that the electrophile in Friedel-Crafts alkylation is a carbocation, at least in most cases. This is in accord with the knowledge that carbocations rearrange in the direction primary — secondary —> tertiary (see Chapter 18). In each case, the cation is formed from the attacking reagent and the catalyst. For the three most important types of reagent these reactions are... [Pg.710]

For a monograph, see Roberts, R.M. Khalaf, A.A. Friedel-Crafts Alkylation Chemistry Marcel Dekker NY, 1984. For a treatise on Friedel-Crafts reactions in general, see Olah, G.A. Friedel-Crafts and Related Reactions Wiley NY, 1963-1965. Volume 1 covers general aspects, such as catalyst activity, intermediate complexes, and so on. Volume 2 covers alkylation and related reactions. In this volume the various reagents are treated by the indicated authors as follows alkenes and alkanes, Patinkin, S.H. Friedman, B.S. p. 1 ... [Pg.747]

In this section, the reactivities of organosilicon compounds for the Friedel-Crafts alkylation of aromatic compounds in the presence of aluminum chloride catalyst and the mechanism of the alkylation reactions will be discus.sed, along with the orientation and isomer distribution in the products and associated problems such as the decomposition of chloroalkylsilanes to chlorosilanes.. Side reactions such as transalkylation and reorientation of alkylated products will also be mentioned, and the insertion reaction of allylsilylation and other related reactions will be explained. [Pg.146]


See other pages where Friedel-Crafts alkylation catalyst is mentioned: [Pg.320]    [Pg.672]    [Pg.320]    [Pg.672]    [Pg.551]    [Pg.552]    [Pg.565]    [Pg.48]    [Pg.102]    [Pg.46]    [Pg.956]    [Pg.123]    [Pg.580]    [Pg.102]    [Pg.19]    [Pg.709]    [Pg.711]    [Pg.712]    [Pg.146]   
See also in sourсe #XX -- [ Pg.260 ]




SEARCH



Alkyl catalysts

Alkylation catalysts

Catalysts Friedel Crafts

Friedel Crafts alkylation

Friedel catalyst

Friedel-Crafts alkylation chiral catalysts

Friedel-Crafts alkylation reactions catalysts for

Friedel-Crafts alkylations

Heterogeneous catalysts Friedel-Crafts alkylation

Selective heterogeneous catalysts Friedel-Crafts alkylation

© 2024 chempedia.info