Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free radical polymerization determination

Fox and Schneckof carried out the free-radical polymerization of methyl methacrylate between -40 and 250 C. By analysis of the a-methyl peaks in the NMR spectra of the products, they determined the following values of a, the probability of an isotactic placement in the products prepared at the different temperatures ... [Pg.500]

The block copolymer produced by Bamford s metal carbonyl/halide-terminated polymers photoinitiating systems are, therefore, more versatile than those based on anionic polymerization, since a wide range of monomers may be incorporated into the block. Although the mean block length is controllable through the parameters that normally determine the mean kinetic chain length in a free radical polymerization, the molecular weight distributions are, of course, much broader than with ionic polymerization and the polymers are, therefore, less well defined,... [Pg.254]

Chemical methods for structure determination in diene pol3 mers have in large measure been superseded by infrared absorption techniques. By comparing the infrared absorption spectra of polybutadiene and of the olefins chosen as models whose ethylenic structures correspond to the respective structural units, it has been possible to show that the bands occurring at 910.5, 966.5, and 724 cm. are characteristic of the 1,2, the mns-1,4, and the m-1,4 units, respectively. Moreover, the proportion of each unit may be determined within 1 or 2 percent from measurements of the absorption intensity in each band. The extinction coefficients characteristic of each structure must, of course, be known these may be assigned from intensity measurements on model compounds. Since the proportions of the various units depend on the rates of competitive reactions, their percentages may be expected to vary with the polymerization temperature. The 1,2 unit occurs to the extent of 18 to 22 percent of the total, almost independent of the temperature, in free-radical-polymerized (emulsion or mass) poly butadiene. The ratio of trans-1,4 to cfs-1,4, however,... [Pg.239]

There are several assumptions used in the MWBD method. Firstly, it is necessary to establish some relationship between [n](V) and Mfj(V). For polymers produced by free radical polymerization, we feel that equation (3) provides an adequate relationship. Secondly, we have assumed a value of Mi instead of determining both b and ML (or c) by fitting the SEC data to whole polymer [n] and M. values. [Pg.146]

If ki and k.i are much larger than kj, the reaction Is controlled by kj. If however, ki and k.i are larger than or comparable to kz, the reaction rate becomes controlled by the translational diffusion determining the probability of collisions which Is typical for specific diffusion control. The latter case Is operative for fast reactions like fluorescence quenching or free-radical chain reactions. The acceleration of free-radical polymerization due to the diffusion-controlled termination by recombination of macroradicals (Trommsdorff effect) can serve as an example. [Pg.23]

As done in Chapter 5, the effect of temperature can be determined using average activation of the various steps. Again, the rates of all single step reactions increase as the temperature increases but the overall result may be different for complex reactions. For free radical polymerizations the activation energies are generally of the order Ei>Ei E > El. Remembering that the description of the specific rate constant is... [Pg.182]

Having established that a particular polymerization follows Bemoullian or first-order Markov or catalyst site control behavior tells us about the mechanism by which polymer stereochemistry is determined. The Bemoullian model describes those polymerizations in which the chain end determines stereochemistry, due to interactions between either the last two units in the chain or the last unit in the chain and the entering monomer. This corresponds to the generally accepted mechanism for polymerizations proceeding in a nonco-ordinated manner to give mostly atactic polymer—ionic polymerizations in polar solvents and free-radical polymerizations. Highly isoselective and syndioselective polymerizations follow the catalyst site control model as expected. Some syndioselective polymerizations follow Markov behavior, which is indicative of a more complex form of chain end control. [Pg.712]

For the evaluation of the obtained GC data, the decrease of MMA concentration is plotted vs. time. From the plot the apparent rate of conversion can be determined. Also, the degree of conversion can be calculated for each data pointThe resulting plot shows until what time the process occurs in a controlled manner and where the uncontrolled free radical polymerization sets in. [Pg.189]

It is not possible at our present stage of knowledge to place all of the catalysts in exact position relative to their ionic nature. The "mid point may be displaced some to either direction. Most catalysts contain several different components with different degrees of ionicity. Which component acts as the active catalyst for a particular double bond is unknown in most cases. Only crude presentations are possible until techniques have been developed to determine the actual ionic nature of the propagating species in isotactic ionic polymerization s such as ESR is capable of in free radical polymerizations. [Pg.381]

Allen, P. W., G. Ayrey, F. M. Merrett and C. G. Moore The use of [C14]-labelled initiators in determining the termination reaction in methyl methacrylate free radical polymerization the importance of molecular weight measurements. J. Polymer Sci. 22, 549 (1956). [Pg.570]

For instance, aromatic solvent vapours were determined with polyurethane MIPs combined with SAW transducers [124]. That is, first, the hydrophilic quartz surface of SAW was hydrophobized with NW-dimethylaminotrimethylsilane. Then a solution for polymerization was prepared by mixing functional monomers, such as 4,4 -dihydroxydiphenyldimethylmethane, 4,4 -diisocyanatodiphenylmethane and 30% 2,4,4 -triisocyanatodiphenylmethane, with the 1,3,5-trihydroxybenzene crosslinker in the ethyl acetate or ethanol template used also as the solvent for polymerization. Subsequently, the hydrophobized resonator surface was spin-coated with an aliquot of this solution. Finally, the free-radical polymerization has been initiated thermally to form a polyurethane MIP film. The desired vapour concentration and relative humidity of the analyte were achieved by mixing dry air and saturated steam with solvent vapours generated with thermoregulated bubblers. [Pg.215]

Also important is that the induction period, which was about 3 min in the ESR experiment, was found to increase to about 30 min in isothermal DSC scans performed at the same cure temperature (Tollens and Lee, 1993). This is possibly due to the presence of dissolved oxygen (coming from air) in the DSC samples. Oxygen is a known inhibitor of the UP-S free-radical polymerization. This is a very important fact rate equations determined... [Pg.184]

Today, the majority of all polymeric materials is produced using the free-radical polymerization technique [11-17]. Unfortunately, however, in conventional free-radical copolymerization, control of the incorporation of monomer species into a copolymer chain is practically impossible. Furthermore, in this process, the propagating macroradicals usually attach monomeric units in a random way, governed by the relative reactivities of polymerizing comonomers. This lack of control confines the versatility of the free-radical process, because the microscopic polymer properties, such as chemical composition distribution and tacticity are key parameters that determine the macroscopic behavior of the resultant product. [Pg.8]

Poly(M,M-diethylacrylamide-co-M,W-dimethylacrylamide) P(DEA-co-DMA) copolymers with different amounts of DMA can be synthesized by free radical polymerization in THF with AIBN as the initiator (1 mol%). In a typical reaction, the solution mixture is bubbled with dry nitrogen for 30 min prior to polymerization. The temperature is then gradually raised to 68 °C in a period of 2 h and maintained for 18 h. Each reaction mixture was precipitated in ether or hexane after the polymerization. The copolymer composition determined by JH NMR spectra is normally close to the feed ratio of monomers prior to polymerization. The nomenclature used hereafter for these copolymers is P(DEA-co-DMA/x), where x denotes the mol % content of DMA. The chemical structure of P(DEA-co-DMA) is as shown in Scheme 6. [Pg.113]

Paramagnetic centers containing a sulfur atom in different oxidation states, (=Si-0)3Si-0-S = O, (=Si-0)3Si-0-S 02, (=Si-0)3Si-0-S02-0, and (=Si-0)3Si-0-S02-0-0, were obtained in Ref. [118]. Their radio-spectroscopic parameters were determined, and the mechanism of free radical oxidation of S02 molecules in this system was established. The mechanism of the initial steps of free radical polymerization and copolymerization of hydrogen- and fluorine-substituted unsaturated hydrocarbons was studied in Ref. [117]. The pathways were found and the kinetic parameters were determined for reactions of intramolecular H(D) atom transfer between r (CH3, CD3, CH2-CH3) and r (CH2-CH2, CD2-CD2), in the structure of (=Si-0)2Si(r)(rI) [120]. [Pg.335]

The homopolymer and block copolymer macromonomers were copolymerized with MMA by free-radical polymerization in benzene at 60 °C using AIBN as an initiator typical concentration were [MMA]=1.2 mol 1 1 and [macromonomer] =0.020 mol l"1. MMA was completely converted in 18 h and the macromonomers conversion reached more than 70% as determined by lH NMR. Incomplete conversion was explained by steric hindrance. Free-radical copolymerization resulted in high MW graft copolymers with PMMA backbone and relatively rigid, nonpolar poly(P-pinene) branches. [Pg.51]

Once least squares values of the /3 s were obtained, it was desirable to extract from them as much information as possible about the original parameters. To do so, we make one further statement concerning the relations between the rate constants for mutual termination of polymeric radicals of different size. It has been shown (2) that termination rates in free radical polymerizations are determined by diffusion rates rather than chemical factors. The relative displacement of two radicals undergoing Brownian motion with diffusion coefficients D and D" also follows the laws of Brownian diffusion with diffusivity D = D -J- D" (11). It... [Pg.56]

Use of triphenylmethyl and cycloheptatrienyl cations as initiators for cationic polymerization provides a convenient method for estimating the absolute reactivity of free ions and ion pairs as propagating intermediates. Mechanisms for the polymerization of vinyl alkyl ethers, N-vinylcarbazole, and tetrahydrofuran, initiated by these reagents, are discussed in detail. Free ions are shown to be much more reactive than ion pairs in most cases, but for hydride abstraction from THF, triphenylmethyl cation is less reactive than its ion pair with hexachlorantimonate ion. Propagation rate coefficients (kP/) for free ion polymerization of isobutyl vinyl ether and N-vinylcarbazole have been determined in CH2Cl2, and for the latter monomer the value of kp is 10s times greater than that for the corresponding free radical polymerization. [Pg.334]

The key problems in a polymerization CSTR are the determination and characterization of micro- and macromixing, and the possibility of multiple steady states due to the exothermic nature of the reactions. Recent studies of CSTRs for bulk or solution free-radical polymerization indicate the possibility of multiple steady states due to the large heat evolution and difficult heat transfer that are characteristic of the reactors. Furthermore, even in simple solution polymerization (for example, in methyl methacrylate polymerization in ethyl acetate solvent), autocatalytic kinetics can lead to runaway conditions even with perfect temperature control for certain combinations of solvent concentration and reactor residence time. In practice, the heat evolution can be an additional source of autocatalytic behavior. [Pg.143]

A more critical test of the gravimetric method for determination of crosslink density (1/7.) would be a comparison of results obtained on the basis of Eq. 16 for poly(Sty-co-DVB) samples made via free-radical polymerization in various... [Pg.28]

Secondary amines give only a monosubstituted product. Both of these reactions are thermally reversible. The product with ammonia (3,3, 3"-nitrilotrispropionamide [2664-61-1] C9HlgN403) (5) is frequently found in crystalline acrylamide as a minor impurity and affects the free-radical polymerization. An extensive study (8) has determined the structural requirements of the amines to form thermally reversible products. Unsymmetrical dialkyl hydrazines add through the unsubstituted nitrogen in basic medium and through the substituted nitrogen in acidic medium (9)). AlonoalkyHiydroxylamine hydrochlorides react with preservation of the hydroxylamine structure (10). Primary nitramines combine in such a way as to keep the nitramine structure intact. [Pg.133]

A conventional free-radical initiator is added (contrary to some other controlled free-radical polymerization techniques) that generates radicals, which can add either to the monomer or the S=C moiety of the RAFT agent (step 1). In most cases the addition of small carbon-centered radicals to the RAFT agent is rapid and is not rate determining. Therefore, step (1) involves polymeric radical addition to 1 to form an intermediate radical species 2 that will fragment back to the original polymeric radical species or fragment to a dormant species 3... [Pg.228]

In addition to blending with SPMI copolymers, PMI can be incorporated into ABS using mass, emulsion [46-50] or suspension [42] free radical polymerization techniques. The high heat ABS resin can be completely produced by mass polymerization, or mass polymerized PMI-SAN can be blended with (emulsion polymerized) SAN-grafted rubber concentrates and/or conventional mass ABS. Sumitomo Naugatuck determined an empirical relation for the compatibility of SAN/SAN-PMI blends based on the polar monomers in each component [51]. Figure 15.4 shows that the miscibility window with SANs becomes wider with increasing PMI level in the terpolymer [52]. [Pg.328]

It is not practical to conduct free-radical polymerizations under conditions where there is an equilibrium between polymerization and depolymerization processes. The polymer synthesis is effectively irreversible in normal radical polymerizations. The course of the reaction is then determined kinetically, and the molecular weight distribution cannot be predicted statistically as was done for equilibrium step-growth polymerizations described in Chapters. [Pg.192]

If ftp is determined, ftt can be estimated from the readily observable relation between ftp/ftt outlined in Section 6.10. Techniques for measuring ft, directly are summarized in specialized reports [1 Ij. Note, however, that termination rates in free-radical polymerizations are always diffusion controlled (see Section 6.13.1) and the apparent value of ft, will depend on the conditions under which it has been measured. [Pg.224]

The choice of initiator has no effect on the propagation reactions in free-radical polymerizations but it can influence ionic propagations because the reactivity of the active center is partly determined by the nature of the counterion that is derived from the initiator. [Pg.305]


See other pages where Free radical polymerization determination is mentioned: [Pg.160]    [Pg.322]    [Pg.242]    [Pg.95]    [Pg.259]    [Pg.129]    [Pg.429]    [Pg.227]    [Pg.72]    [Pg.311]    [Pg.26]    [Pg.380]    [Pg.782]    [Pg.134]    [Pg.274]    [Pg.112]    [Pg.187]    [Pg.466]    [Pg.115]    [Pg.241]    [Pg.381]    [Pg.397]    [Pg.387]    [Pg.189]   
See also in sourсe #XX -- [ Pg.224 ]

See also in sourсe #XX -- [ Pg.224 ]




SEARCH



Determination free radicals

Polymerization determining

Polymerization free radical

© 2024 chempedia.info