Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Free radicals, determination

M.p. 296 C. Accepts an electron from suitable donors forming a radical anion. Used for colorimetric determination of free radical precursors, replacement of Mn02 in aluminium solid electrolytic capacitors, construction of heat-sensitive resistors and ion-specific electrodes and for inducing radical polymerizations. The charge transfer complexes it forms with certain donors behave electrically like metals with anisotropic conductivity. Like tetracyanoethylene it belongs to a class of compounds called rr-acids. tetracyclines An important group of antibiotics isolated from Streptomyces spp., having structures based on a naphthacene skeleton. Tetracycline, the parent compound, has the structure ... [Pg.389]

The free radical mechanism is confirmed by the fact that if a substituted aromatic hydrocarbon is used in this reaction, the incoming group (derived from the diazotate) may not necessarily occupy the position in the benzene ring normally determined by the substituent present—a characteristic of free radical reactions. [Pg.201]

Tlie formation of initiator radicals is not the only process that determines the concentration of free radicals in a polymerization system. Polymer propagation itself does not change the radical concentration it merely changes one radical to another. Termination steps also occur, however, and these remove radicals from the system. We shall discuss combination and disproportionation reactions as modes of termination. [Pg.358]

This important equation shows that the stationary-state free-radical concentration increases with and varies directly with and inversely with. The concentration of free radicals determines the rate at which polymer forms and the eventual molecular weight of the polymer, since each radical is a growth site. We shall examine these aspects of Eq. (6.23) in the next section. We conclude this section with a numerical example which concerns the stationary-state radical concentration for a typical system. [Pg.363]

The superpositioning of experimental and theoretical curves to evaluate a characteristic time is reminiscent of the time-tefnperature superpositioning described in Sec. 4.10. This parallel is even more apparent if the theoretical curve is drawn on a logarithmic scale, in which case the distance by which the curve has to be shifted measures log r. Note that the limiting values of the ordinate in Fig. 6.6 correspond to the limits described in Eqs. (6.46) and (6.47). Because this method effectively averages over both the buildup and the decay phases of radical concentration, it affords an experimentally less demanding method for the determination of r than alternative methods which utilize either the buildup or the decay portions of the non-stationary-state free-radical concentration. [Pg.379]

Fox and Schneckof carried out the free-radical polymerization of methyl methacrylate between -40 and 250 C. By analysis of the a-methyl peaks in the NMR spectra of the products, they determined the following values of a, the probability of an isotactic placement in the products prepared at the different temperatures ... [Pg.500]

Secondary amines give only a monosubstituted product. Both of these reactions are thermally reversible. The product with ammonia (3,3, 3 -nitrilottispropionamide [2664-61-1C H gN O ) (5) is frequently found in crystalline acrylamide as a minor impurity and affects the free-radical polymerisation. An extensive study (8) has determined the stmctural requirements of the amines to form thermally reversible products. Unsymmetrical dialkyl hydrasines add through the unsubstituted nitrogen in basic medium and through the substituted nitrogen in acidic medium (9)). [Pg.133]

Usually, free-radical initiators such as azo compounds or peroxides are used to initiate the polymerization of acrylic monomers. Photochemical (72—74) and radiation-initiated (75) polymerizations are also well known. At a constant temperature, the initial rate of the bulk or solution radical polymerization of acrylic monomers is first order with respect to monomer concentration and one-half order with respect to the initiator concentration. Rate data for polymerization of several common acrylic monomers initiated with 2,2 -azobisisobutyronittile (AIBN) [78-67-1] have been determined and are shown in Table 6. The table also includes heats of polymerization and volume percent shrinkage data. [Pg.165]

Copolymers of VF and a wide variety of other monomers have been prepared (6,41—48). The high energy of the propagating vinyl fluoride radical strongly influences the course of these polymerizations. VF incorporates well with other monomers that do not produce stable free radicals, such as ethylene and vinyl acetate, but is sparingly incorporated with more stable radicals such as acrylonitrile [107-13-1] and vinyl chloride. An Alfrey-Price value of 0.010 0.005 and an e value of 0.8 0.2 have been determined (49). The low value of is consistent with titde resonance stability and the e value is suggestive of an electron-rich monomer. [Pg.379]

Chemical Factors. Because knock is caused by chemical reactions in the engine, it is reasonable to assume that chemical stmcture plays an important role in determining the resistance of a particular compound to knock. Reactions that produce knock are generally free-radical chain-type reactions which are different from those that occur in the body of the flame the former occur at lower temperatures and are called cool flame reactions. [Pg.179]

Density. The density (crystallinity) of catalyticaHy produced PE is primarily determined by the amount of comonomer ( a-olefin) in ethylene copolymer. This amount is easily controlled by varying the relative amounts of ethylene and the comonomer in a polymerization reactor. In contrast, the density of PE produced in free-radical processes is usually controlled by temperature. [Pg.368]

The degree of polymerization is controlled by the rate of addition of the initiator. Reaction in the presence of an initiator proceeds in two steps. First, the rate-determining decomposition of initiator to free radicals. Secondly, the addition of a monomer unit to form a chain radical, the propagation step (Fig. 2) (9). Such regeneration of the radical is characteristic of chain reactions. Some of the mote common initiators and their half-life values are Hsted in Table 3 (10). [Pg.375]

Reversible electron addition to the enone forms the radical anion. Rate determining protonation of the radical anion occurs on oxygen to afford an allylic free radical [Eq. (4b) which undergoes rapid reduction to an allylic carbanion [Eq. (4c)]. Rapid protonation of this ion is followed by proton removal from the oxygen of the neutral enol to afford the enolate ion [Eq. (4c)]. [Pg.29]

Bateman, Gee, Barnard, and others at the British Rubber Producers Research Association [6,7] developed a free radical chain reaction mechanism to explain the autoxidation of rubber which was later extended to other polymers and hydrocarbon compounds of technological importance [8,9]. Scheme 1 gives the main steps of the free radical chain reaction process involved in polymer oxidation and highlights the important role of hydroperoxides in the autoinitiation reaction, reaction lb and Ic. For most polymers, reaction le is rate determining and hence at normal oxygen pressures, the concentration of peroxyl radical (ROO ) is maximum and termination is favoured by reactions of ROO reactions If and Ig. [Pg.105]

The block copolymer produced by Bamford s metal carbonyl/halide-terminated polymers photoinitiating systems are, therefore, more versatile than those based on anionic polymerization, since a wide range of monomers may be incorporated into the block. Although the mean block length is controllable through the parameters that normally determine the mean kinetic chain length in a free radical polymerization, the molecular weight distributions are, of course, much broader than with ionic polymerization and the polymers are, therefore, less well defined,... [Pg.254]


See other pages where Free radicals, determination is mentioned: [Pg.319]    [Pg.4]    [Pg.154]    [Pg.397]    [Pg.469]    [Pg.41]    [Pg.319]    [Pg.4]    [Pg.154]    [Pg.397]    [Pg.469]    [Pg.41]    [Pg.369]    [Pg.91]    [Pg.265]    [Pg.433]    [Pg.134]    [Pg.151]    [Pg.276]    [Pg.53]    [Pg.433]    [Pg.47]    [Pg.510]    [Pg.466]    [Pg.86]    [Pg.465]    [Pg.106]    [Pg.496]    [Pg.84]    [Pg.315]    [Pg.667]    [Pg.416]    [Pg.492]    [Pg.13]    [Pg.104]    [Pg.342]    [Pg.200]    [Pg.483]   
See also in sourсe #XX -- [ Pg.122 ]




SEARCH



Alkoxide free radical, hydroperoxide determination

Determining free radicals

Free radical polymerization determination

Free radicals, determination flames

Free-radical chain mechanism, experiment determination

© 2024 chempedia.info