Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier transform solid surfaces

QCMB RAM SBR SEI SEM SERS SFL SHE SLI SNIFTIRS quartz crystal microbalance rechargeable alkaline manganese dioxide-zinc styrene-butadiene rubber solid electrolyte interphase scanning electron microscopy surface enhanced Raman spectroscopy sulfolane-based electrolyte standard hydrogen electrode starter-light-ignition subtractively normalized interfacial Fourier transform infrared... [Pg.604]

The same reversible appearance and disappearance of the Pt(lll)-(12xl2)-Na overlayer is shown in Figure 5.51, together with the corresponding two-dimensional Fourier-transform spectra and also in Fig. 5.52, which shows smaller areas of the sodium-free and sodium doped Pt(lll) surface. The reversible electrochemically controlled spillover/backspillover of sodium between the solid electrolyte and the Pt(lll) surface is clearly proven. [Pg.262]

Surface forces measurement is a unique tool for surface characterization. It can directly monitor the distance (D) dependence of surface properties, which is difficult to obtain by other techniques. One of the simplest examples is the case of the electric double-layer force. The repulsion observed between charged surfaces describes the counterion distribution in the vicinity of surfaces and is known as the electric double-layer force (repulsion). In a similar manner, we should be able to study various, more complex surface phenomena and obtain new insight into them. Indeed, based on observation by surface forces measurement and Fourier transform infrared (FTIR) spectroscopy, we have found the formation of a novel molecular architecture, an alcohol macrocluster, at the solid-liquid interface. [Pg.3]

These several techniques for the solid-solution interface give different kinds of information. However, the one which gives most information about the nature of entities on the surface, and potentially near the surface, is fourier transform IR spectroscopy, which is not restricted to a particular metal, or, indeed, to the type of substrate (except that this must be reflecting). [Pg.351]

Titration calorimetry and cylindrical internal reflection-Fourier transform infrared (CIR-FTIR) spectroscopy are two techniques which have seldom been applied to study reactions at the solid-liquid interface. In this paper, we describe these two techniques and their application to the investigation of salicylate ion adsorption in aqueous goethite (a-FeOOH) suspensions from pH 4 to 7. Evidence suggests that salicylate adsorbs on goethite by forming a chelate structure in which each salicylate ion replaces two hydroxyls attached to a single iron atom at the surface. [Pg.142]

Most earlier papers dealt with the mercury electrode because of its unique and convenient features, such as surface cleanness, smoothness, isotropic surface properties, and wide range of ideal polarizability. These properties are gener y uncharacteristic of solid metal electrodes, so the results of the sohd met electrolyte interface studies are not as explicit as they are for mercury and are often more controversial. This has been shown by Bockris and Jeng, who studied adsorption of 19 different organic compounds on polycrystaUine platinum electrodes in 0.0 IM HCl solution using a radiotracer method, eUipsometry, and Fourier Transform Infrared Spectroscopy. The authors have determined and discussed adsorption isotherms and the kinetics of adsorption of the studied compounds. Their results were later critically reviewed by Wieckowski. ... [Pg.16]

Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFT).6 When IR radiation is directed onto the surface of a solid sample, two types of energy reflectance can occur specular and diffuse. The specular component is the radiation that reflects directly off the sample surface (i.e., not absorbed by the sample). Diffuse reflectance is the radiation that penetrates into the sample and then emerges. Diffuse reflectance accessories are designed to optimize the diffuse reflected energy and suppress the specular component. The optics therefore selectively directs the scattered radiation to the IR detector. [Pg.223]

It must not, however, be forgotten that conventional techniques (e.g., 13C Fourier transform NMR) can be applied to certain solids of catalytic significance, such as sheet silicates since in many of these systems rapid motion of intercalated or otherwise sorbed organic species secures sharp absorption lines which provide much information about the individual atomic environments. Organic species attached to high surface area solids (such as zeolites, silica, alumina, magnesia, as well as other oxides and their mixtures) are specific examples (6). [Pg.202]

Transmission Fourier Transform Infrared Spectroscopy. The most straightforward method for the acquisition of ir spectra of surface layers is standard transmission spectroscopy (35,36). This approach can only be used for samples which are partially ir transparent or which can be diluted with an ir transparent medium such as KBr and pressed into a transmissive pellet. The extent to which the ir spectral region (typically ca 600 4000 cm-1 ) is available for study depends on the ir absorption characteristics of the solid support material. Transmission ftir spectroscopy is most often used to study surface species on metal oxides. These solids leave reasonably large spectral windows within which the spectral behavior of the surface species can be viewed. [Pg.285]

Another exciting possibility for high sensitivity molecular surface mass spectrometry is the use of laser-excited ion desorption in a pulsed ion cyclotron resonance experiment using Fourier transform techniques. In an ideal situation, this scheme could include all those attributes which are desirable for solid-surface molecular characterization ... [Pg.109]

Some very important surface properties of solids can be properly characterized only by certain wet chemical techniques, some of which are currently under rapid improvement. Studies of adsorption from solution allow determination of the surface density of adsorbing sites, and the characterization of the surface forces involved (the energy of dispersion forces, the strength of acidic or basic sites and the surface density of coul-ombic charge). Adsorption studies can now be extended with some newer spectroscopic tools (Fourier-transform infra-red spectroscopy, laser Raman spectroscopy, and solid NMR spectroscopy), as well as convenient modern versions of older techniques (Doppler electrophoresis, flow microcalorimetry, and automated ellipsometry). [Pg.69]

Mass spectrometers are used not only to detect the masses of proteins and peptides, but also to identify the proteins, to compare patterns of proteins and peptides, and to scan tissue sections for specific masses. MS is able to do this by giving the mass-to-charge ratio of an ionized species as well as its relative abundance. For biological sample analysis, mass spectrometers are connected to an ionizing source, which is usually matrix-assisted laser desorption ionization (MALDI) [14], surface-enhanced laser desorption/ioni-zation (SELDI, a modified form of MALDI) [15], or electrospray ionization [16]. These interfaces enable the transfer of the peptides or proteins from the solid or liquid phase, respectively, to the gas (vacuum) phase inside the mass spectrometer. Both MALDI and electrospray ionization can be connected to different types of mass analyzers, such as quadrupole, quadruple-ion-traps, time of flight (TOF), or hybrid instruments such as quadrupole-TOF or Fourier transform-ion cyclotron resonance. Each of these instruments can... [Pg.163]

Surface analytical techniques. A variety of spectroscopic methods have been used to characterize the nature of adsorbed species at the solid-water interface in natural and experimental systems (Brown et al, 1999). Surface spectroscopy techniques such as extended X-ray absorption fine structure spectroscopy (EXAFS) and attenuated total reflectance Fourier transform infrared spectroscopy (ATR-FTIR) have been used to characterize complexes of fission products, thorium, uranium, plutonium, and uranium sorbed onto silicates, goethite, clays, and microbes (Chisholm-Brause et al, 1992, 1994 Dent et al, 1992 Combes et al, 1992 Bargar et al, 2000 Brown and Sturchio, 2002). A recent overview of the theory and applications of synchrotron radiation to the analysis of the surfaces of soils, amorphous materials, rocks, and organic matter in low-temperature geochemistry and environmental science can be found in Fenter et al (2002). [Pg.4760]

Due to their large surface area for adsorption, porous materials are useful excipients for solid dispersions. For example, 2-naphthoic acid (2-NPA) solid dispersion with porous crystalline cellulose (PCC) has been successfully prepared by heat treatment of 2-NPA and PCC mixture. " PCC is derived from MCC, but with a larger surface area. Different from 2-NPA mixed with PCC, 2-NPA mixed with MCC still maintained a crystalline form under the same mixing and heating conditions. Various experimental data such as X-ray powder diffraction, Fourier transform infrared (FT-IR) spectroscopy, and solid-state fluorescence measurements suggest that 2-NPA is adsorbed onto the surface of PCC and becomes molecularly dispersed into the system. [Pg.39]


See other pages where Fourier transform solid surfaces is mentioned: [Pg.248]    [Pg.134]    [Pg.218]    [Pg.575]    [Pg.13]    [Pg.16]    [Pg.198]    [Pg.16]    [Pg.22]    [Pg.102]    [Pg.17]    [Pg.264]    [Pg.114]    [Pg.596]    [Pg.10]    [Pg.307]    [Pg.242]    [Pg.286]    [Pg.103]    [Pg.199]    [Pg.154]    [Pg.1]    [Pg.178]    [Pg.204]    [Pg.81]    [Pg.1508]    [Pg.4746]    [Pg.308]    [Pg.773]    [Pg.242]    [Pg.2333]    [Pg.194]   
See also in sourсe #XX -- [ Pg.29 ]




SEARCH



Solid transformations

© 2024 chempedia.info