Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fourier transform copolymers

The objective of this study is to characterize tin-containing polymers on a molecular level by means of high field, high resolution, multinuclear Fourier Transform Nuclear Magnetic Resonance (FT-NMR) (4 ). This study is generally an applied approach dealing with composition and configuration of specific formulations of the copolymer. [Pg.484]

NMR) [24], and Fourier transform-infrared (FT-IR) spectroscopy [25] are commonly applied methods. Analysis using mass spectrometric (MS) techniques has been achieved with gas chromatography-mass spectrometry (GC-MS), with chemical ionisation (Cl) often more informative than conventional electron impact (El) ionisation [26]. For the qualitative and quantitative characterisation of silicone polyether copolymers in particular, SEC, NMR, and FT-IR have also been demonstrated as useful and informative methods [22] and the application of high-temperature GC and inductively coupled plasma-atomic emission spectroscopy (ICP-AES) is also described [5]. [Pg.239]

Principal Component Regression (PCR) was used by Tuchbreiter and MueUiaupt to determine the composition of a number of random ethane/propene, ethane/1-hexene, and ethane/l-octene copolymers [120]. After polymerization, the polymers were characterized by both Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FT-IR) and C NMR and multivariate calibration models using PCR were subsequently developed to estimate the co-monomer content. [Pg.132]

Tuchbreiter A, Marquardt J, Zimmermann J et al. (2001) High-throughput evaluation of olefin copolymer composition by means of attenuated total reflection fourier transform infrared spectroscopy. J Comb Chem 3 598-603... [Pg.147]

Coleman, M. M., Sivy, G. T. Fourier Transform Infrared Studies of the Degration of Polyacrylonitrile) Copolymers I. Introduction and Comparative Rates of the Degradation of Three Copolymers Below 200 °C and Under Reduced Pressure. Preprint submitted to CARBON... [Pg.152]

Here q is a wavevector (eqn 1.6), ip(q) is the Fourier transform of />(r), and S(q) is the structure factor (Fourier transform of the two-point correlation function). The cubic term, ft, is zero for a symmetric system and otherwise may be chosen to be positive. The quartic term, y, is then positive to ensure stability. For block copolymers, these coefficients may be expressed in terms of vertex functions calculated in the random phase approximation (RPA) by Leibler (1980). The structure factor is given by... [Pg.75]

Regarding the spatial aspects of the enzymatic degradation of CA-g-PLLA, a surface characterization [30] was carried out for melt-molded films by atomic force microscopy (AFM) and attenuated total-reflection Fourier-transform infrared spectroscopy (ATR-FTIR) before and after the hydrolysis test with proteinase K. As exemplified in Fig. 3 for a copolymer of MS = 22, the AFM study showed that hydrolysis for a few weeks caused a transformation of the original smooth surface of the test specimen (Fig. 3a) into a more undulated surface with a number of protuberances of 50-300 nm in height and less than a few micrometers in width (Fig. 3b). The ATR-FTIR measurements proved a selective release of lactyl units in the surface region of the hydrolyzed films, and the absorption intensity data monitored as a function of time was explicable in accordance with the AFM result. [Pg.106]

Perhaps the widest application is that of conventional high-resolution spectroscopy in solution for the purpose of learning in detail about polymer chain structure. In this field, proton NMR, formerly dominant, has given way to carbon-13 NMR with the development of pulse Fourier transform spectrometers with spectrum accumulation. Carbon spectroscopy is capable of giving very detailed and often quite sophisticated information. For example, a very complete accounting can be provided of comonomer sequences in vinyl copolymers and branches can be identified and counted, even at very low levels, in polyethylenes. [Pg.316]

Olvera de la Cruz and Sanchez [76] were first to report theoretical calculations concerning the phase stability of graft and miktoarm AnBn star copolymers with equal numbers of A and B branches. The static structure factor S(q) was calculated for the disordered phase (melt) by expanding the free energy, in terms of the Fourier transform of the order parameter. They applied path integral methods which are equivalent to the random phase approximation method used by Leibler. For the copolymers considered S(q) had the functional form S(q) 1 = (Q(q)/N)-2% where N is the total number of units of the copolymer chain, % the Flory interaction parameter and Q a function that depends specifically on the copolymer type. S(q) has a maximum at q which is determined by the equation dQ/dQ=0. [Pg.110]

Carboxylate ionomers have been characterised with Fourier transform-infrared (FT-IR) in the region of antisymmetric stretching vibration of carboxylate anions. Figure 4.8 shows carboxylate ionomer [89] of ethylene methacrylic (4%) copolymer). [Pg.147]

Fourier transform (FT) IR analysis of the photooxidized SAN samples shows that the oxidation products formed in the copolymer may result not only from the oxidation of the styrene units, even in the first few hours of irradiation [11]. Figure 30.4 shows that the absorbance of the carbonylated photoproducts in the photooxidized SAN samples is different compared with PS (Figure 30.1). Substantial evidence for the contribution of the acrylonitrile units in the photooxidation was obtained by chemical and physical treatments carried out on pre-photooxidized samples as described above. For example, the SF4 treatment of a SAN photooxidized sample led to a partial decrease in absorbance in the hydroxyl region, corresponding to the disappearance of alcohols, hydroperoxides and acids. The absorbance remaining after treatment may be assigned to... [Pg.709]

Very low-angle X-ray data (26 A resolution) of horse spleen apoferritin fit approximately the Fourier transform of a uniform spherical shell with inner and outer diameters of 76 and 122 A (92, 95). Low-angle difference X-ray data for ferritin and apoferritin indicate iron cores of high scattering power that are approximately spherical (d = 78 A) (92). Cubic crystal point symmetry shows that ferritin molecules are composed of 24 structurally equivalent subunits related by 432 symmetry, there being one polypeptide chain per asymmetric unit. In mixed H and L chain copolymers, the apparent structural equivalence must be statistical, although very similar chain conformations are expected. [Pg.469]

Divinylbenzene-hydrophilic methacrylate copolymer 944 DNOC 1350 Domesticine 1064 DOtz benzannulation 454-459 Double Fourier transform filtering 984, 985 DRD 953 Drinking water,... [Pg.1487]

Acetonitrile was also used as the solvent for the first successful synthesis of a PAn/PPy copolymer via galvanostatic (constant-current) electropolymerization of mixtures of aniline (0.5 M) and pyrrole (0.1-1.0 M) in acetonitrile solvent in the presence of CF3COOH as acid and tetraethylammonium tetrafluoroborate as supporting electrolyte. Differential scanning calorimetry and Fourier transform infrared (FTIR) measurements confirmed that the electrically conducting product was a mixture of PAn, PPy, and a random PAn/PPy copolymer.36... [Pg.141]

By sequential copolymerization of styrene and propylene using a modified Ziegler-Natta catalyst, MgCl2/TiCl4/NdClc(OR) //Al(iBu)3, which was developed in our laboratory, a styrene-propylene block copolymer is obtained. After fractionation by successive solvent extraction with suitable solvents, the copolymer was subjected to extensive molecular and morphological characterization using 13C-NMR, DSC, DMTA, and TEM. The results indicate that the copolymer is a crystalline diblock copolymer of iPS and iPP (iPS-fo-iPP). The diblock copolymer contains 40% iPS as determined by Fourier transform infrared spectroscopy and elemental analysis. [Pg.371]

Fourier-Transform Raman Spectroscopy (FTR) was used to characterize a homologous series of aliphatic poly(anhydrides), poly(carboxyphenoxy)al-kanes, and copolymers of carboxyphenoxy propane (CPP) and sebacic acid. All anhydrides show two diagnostic carbonyl bands, the aliphatic polymers has the carbonyl pairing at 1803/1739 cm 1, and the aromatic polymers have the band pair at 1764 and 1712 cm -1. All the homo- and copolymers showed methylene bands due to deformation, stretching, rocking and twisting the spectra for the... [Pg.121]


See other pages where Fourier transform copolymers is mentioned: [Pg.148]    [Pg.682]    [Pg.403]    [Pg.406]    [Pg.222]    [Pg.366]    [Pg.148]    [Pg.148]    [Pg.99]    [Pg.151]    [Pg.122]    [Pg.600]    [Pg.106]    [Pg.177]    [Pg.141]    [Pg.285]    [Pg.9]    [Pg.265]    [Pg.458]    [Pg.151]    [Pg.65]    [Pg.353]    [Pg.49]    [Pg.409]    [Pg.215]    [Pg.268]    [Pg.950]    [Pg.503]    [Pg.510]   
See also in sourсe #XX -- [ Pg.165 , Pg.175 ]




SEARCH



Copolymers Fourier transform infrared spectroscopy

Fourier transform infrared copolymers

Fourier-transform infrared spectroscopy block copolymers

© 2024 chempedia.info