Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formaldehyde reactions atmosphere

Methods for the collection and determination of formaldehyde in water show great similarity to those methods for air described above. The methods of Tomkins et al. (1989) and EPA (1992b) for formaldehyde in drinking water and the method of Facchini et al. (1990) for formaldehyde in fog water all rely on the formation of the DNPH derivative followed by HPLC. The method of Dong and Dasgupta (1987) relies on the reaction of formaldehyde in atmospheric water with a diketone (2,4-pentanedione) and ammonimn acetate to form a ftuorescent derivative that is measured spectrophotometrically in a flow injection analysis system. [Pg.348]

At night the thermal decomposition of PAN in an atmosphere with a relatively high mixing ratio of NO (e.g.,10 ppb) can initiate reaction 5.96 that converts NO to NO2 and produces a methylperoxy radical, which itself may convert another NO to NO2 and produce a molecule of formaldehyde, reaction 5.45. This sequence could lead to a reservoir of photo-chemically active species when the Sun rises. [Pg.284]

Tetra-(chloromethyl)-phosphonium chloride (5 g) in 20 mL water was treated with 8 g sodium bicarbonate. The solution became milky and gave a strong formaldehyde reaction with fusion reagent. The phosphine was shaken out with carbon bisulfide, dried over sodium sulfate, and distilled under diminished pressure b.p. 100°C (7 mmHg). While heated at atmospheric pressure, tri-(chloromethyl)phosphine decomposes. It is a colorless, mobile liquid with a powerful, benumbing odor and with slight solubility in water. [Pg.596]

Copper is in its compounds with oxygen an efficient catalyst for the partial oxidation of alcohols to aldehydes. In methanol-oxygen-mixtures copper catalyses efficiently the partial oxidation of methanol to formaldehyde at atmospheric pressure in the temperature range of about 600 - 770 K. The most important reaction channels are ... [Pg.57]

The reaction is generally carried out at atmospheric pressure and at 350—400°C. A variety of catalysts, eg, bases and metal salts and oxides on siUca or alumina—sihcates, have been patented (86—91). Conversions are in the 30—70% range and selectivities in the 60—90% range, depending on the catalyst and the ratio of formaldehyde to acetate. [Pg.156]

Silver Catalyst Process. In early formaldehyde plants methanol was oxidized over a copper catalyst, but this has been almost completely replaced with silver (75). The silver-catalyzed reactions occur at essentially atmospheric pressure and 600 to 650°C (76) and can be represented by two simultaneous reactions ... [Pg.493]

In contrast to the silver process, all of the formaldehyde is made by the exothermic reaction (eq. 23) at essentially atmospheric pressure and at 300—400°C. By proper temperature control, a methanol conversion greater than 99% can be maintained. By-products are carbon monoxide and dimethyl ether, in addition to small amounts of carbon dioxide and formic acid. Overall plant yields are 88—92%. [Pg.494]

Temperatures in excess of 140°C are required to complete the reaction and pressurized equipment is used for alcohols boiling below this temperature provision must be made for venting ammonia without loss of alcohol. The reaction is straightforward and, ia the case of the monomethyl ether of ethylene glycol [109-86-4] can be carried out at atmospheric pressure usiag stoichiometric quantities of urea and alcohol (45). Methylolation with aqueous formaldehyde is carried out at 70—90°C under alkaline conditions. The excess formaldehyde needed for complete dimethylolation remains ia the resia and prevents more extensive usage because of formaldehyde odor problems ia the mill. [Pg.331]

A frequently cited example of protection from atmospheric corrosion is the Eiffel Tower. The narrow and, for that age, thin sections required a good priming of red lead for protection against corrosion. The top coat was linseed oil with white lead, and later coatings of ochre, iron oxide, and micaceous iron oxide were added. Since its constmction the coating has been renewed several times [29]. Modern atmospheric corrosion protection uses quick-drying nitrocellulose, synthetic resins, and reaction resins (two-component mixes). The chemist Leo Baekeland discovered the synthetic material named after him, Bakelite, in 1907. Three years later the first synthetic resin (phenol formaldehyde) proved itself in a protective paint. A new materials era had dawned. [Pg.9]

The oxidative dehydrogenation of methanol to formaldehyde was choosen as model reaction by BASF for performance evaluation of micro reactors [1, 49-51, 108]. In the industrial process a methanol-air mixture of equimolecular ratio of methanol and oxygen is guided through a shallow catalyst bed of silver at 150 °C feed temperature, 600-650 °C exit temperature, atmospheric pressure and a contact time of 10 ms or less. Conversion amounts to 60-70% at a selectivity of about 90%. [Pg.314]

A reaction between organic compounds is carried out in the liquid phase in a stirred-tank reactor in the presence of excess formaldehyde. The organic reactants are nonvolatile in comparison with the formaldehyde. The reactor is vented to atmosphere via an absorber to scrub any organic material carried from the reactor. The absorber is fed with freshwater and the water from the absorber rejected to effluent. The major contaminant in the aqueous waste from the absorber is formaldehyde. [Pg.646]

From the viewpoint of a model of prebiotic chemical evolution and of the primitive atmosphere of the Earth,174175 photosynthetic reactions of C02 were also examined, and formaldehyde with various nitrogen-containing products was obtained. [Pg.386]

Many years later, Schwartz (Schwartz and Goverde, 1982 Voet and Schwartz, 1983) discovered that the synthesis of adenine via polymerisation of HCN can be accelerated by adding formaldehyde and other aldehydes. Reactions in the gas phase (nitrogen/methane atmosphere) promoted by electrical discharges led to the formation of cyanoacetylene in relatively good yields the latter reacts with urea to give various products, including cytosine (Sanchez et al., 1968). [Pg.93]

Preparation A mixture of phenol and formaldehyde is taken in the distillation vessel. To this hydrochloric acid or sulphuric acid or oxalic acid is added. Now the reaction mixture is heated under reflex at about 100-120°C for 2-4 hours. Water is a by-products which is distilled off at the atmospheric pressure. The resin to obtained is having the Melting point 65-75°C. [Pg.162]

Bufalini, J. J., and,K. L. Brubaker. The photooxidation of formaldehyde at low partial pressures, pp. 225-238. In C. S. Tuesday, Ed. Chemical Reactions in Urt)an Atmospheres. Proceedings of the Symposium held at General Motors Research Laboratories, Warren, Michigan, 1%9. New York American Elsevier. 1971. [Pg.41]

Photolytic. Photolysis products include carbon monoxide, ethylene, free radicals, and a polymer (Calvert and Pitts, 1966). Anticipated products from the reaction of acrolein with ozone or OH radicals in the atmosphere are glyoxal, formaldehyde, formic acid, and carbon dioxide (Cupitt,... [Pg.74]

Photolytic. Atkinson (1985) reported a rate constant of 2.59 x 10 " cmVmolecule-sec at 298 K. Based on an atmospheric OH concentration of 1.0 x 10 molecule/cm , the reported half-life of allyl alcohol is 0.35 d. The reaction of allyl alcohol results in the OH addition to the C=C bond (Grosjean, 1997). In a similar study, Orlando et al. (2001) studied the reaction of allyl alcohol with OH radicals at 298 K. Photolysis was conducted using a xenon-arc lamp within the range of 240-400 nm in synthetic air at 700 mmHg. A rate constant of 4.5 x 10 " cm /molecule-sec was reported. Products identified were formaldehyde, glycolaldehyde, and acrolein. [Pg.88]

Photolytic. A photooxidation rate constant of 6 x 10 " cm /molecule-sec at room temperature was reported for the vapor-phase reaction of benzene with OH radicals in air (Atkinson, 1985). The reported rate constant and half-life for the reaction of benzene and OH radicals in the atmosphere are 8.2 x 10 M/sec and 6.8 d, respectively (Mill, 1982). Major photooxidation products in air include nitrobenzene, nitrophenol, phenol, glyoxal, butanedial, formaldehyde, carbon dioxide, and carbon monoxide (Nojima et al., 1975 Finlayson-Pitts and Pitts, 1986). [Pg.126]

Grosjean et al. (1996) investigated the atmospheric chemistry of cyclohexene with ozone and an ozone-nitrogen oxide mixture under ambient conditions. The reaction of cyclohexene and ozone in the dark yielded pentanal and cyclohexanone. The sunlight irradiation of cyclohexene with ozone-nitrogen oxide yielded the following carbonyls formaldehyde, acetaldehyde, acetone, propanal, butanal, pentanal, and a C4 carbonyl. [Pg.336]

Photolytic. Dimethylnitramine, nitrous acid, formaldehyde, V.V-dimethylformamide and carbon monoxide were reported as photooxidation products of dimethylamine with NOx. An additional compound was tentatively identified as tetramethylhydrazine (Tuazon et al., 1978). In the atmosphere, dimethylamine reacts with OH radicals forming formaldehyde and/or amides (Atkinson et al, 1978). The rate constant for the reaction of dimethylamine and ozone in the atmosphere is 2.61 x 10 cmVmolecule-sec at 296 K (Atkinson and Carter, 1984). [Pg.464]

Chemical/Physical. Anticipated products from the reaction of epichlorohydrin with ozone or OH radicals in the atmosphere are formaldehyde, glyoxylic acid, and C1CH20(0)0HCH0 (Cupitt, 1980). Haag and Yao (1992) reported a calculated OH radical rate constant in water of 2.9 x 10 /M-sec. [Pg.545]

Chemical/Physical. Atkinson et al. (2000) studied the kinetic and products of the gas-phase reaction of 2-heptanone with OH radicals in purified air at 25 °C and 740 mmHg. A relative rate constant of 1.17 x 10 " cmVmolecule Sec was calculated for this reaction. Reaction products identified by GO, FTIR, and atmospheric pressure ionization tandem mass spectroscopy were (with respective molar yields) formaldehyde, 0.38 acetaldehyde, L0.05 propanal, X0.05 butanal, 0.07 pentanal, 0.09 and molecular weight 175 organic nitrates. [Pg.622]

Photolytic. Anticipated products from the reaction of 2-nitropropane with ozone or OH radicals in the atmosphere are formaldehyde and acetaldehyde (Cupitt, 1980). [Pg.860]

Tuazon et al. (1984a) investigated the atmospheric reactions of TV-nitrosodimethylamine and dimethylnitramine in an environmental chamber utilizing in situ long-path Fourier transform infared spectroscopy. They irradiated an ozone-rich atmosphere containing A-nitrosodimethyl-amine. Photolysis products identified include dimethylnitramine, nitromethane, formaldehyde, carbon monoxide, nitrogen dioxide, nitrogen pentoxide, and nitric acid. The rate constants for the reaction of fV-nitrosodimethylamine with OH radicals and ozone relative to methyl ether were 3.0 X 10 and <1 x 10 ° cmVmolecule-sec, respectively. The estimated atmospheric half-life of A-nitrosodimethylamine in the troposphere is approximately 5 min. [Pg.862]

Photolytic. Irradiation of vinyl chloride in the presence of nitrogen dioxide for 160 min produced formic acid, HCl, carbon monoxide, formaldehyde, ozone, and trace amounts of formyl chloride and nitric acid. In the presence of ozone, however, vinyl chloride photooxidized to carbon monoxide, formaldehyde, formic acid, and small amounts of HCl (Gay et al, 1976). Reported photooxidation products in the troposphere include hydrogen chloride and/or formyl chloride (U.S. EPA, 1985). In the presence of moisture, formyl chloride will decompose to carbon monoxide and HCl (Morrison and Boyd, 1971). Vinyl chloride reacts rapidly with OH radicals in the atmosphere. Based on a reaction rate of 6.6 x lO" cmVmolecule-sec, the estimated half-life for this reaction at 299 K is 1.5 d (Perry et al., 1977). Vinyl chloride reacts also with ozone and NO3 in the gas-phase. Sanhueza et al. (1976) reported a rate constant of 6.5 x 10 cmVmolecule-sec for the reaction with OH radicals in air at 295 K. Atkinson et al. (1988) reported a rate constant of 4.45 X 10cmVmolecule-sec for the reaction with NO3 radicals in air at 298 K. [Pg.1147]


See other pages where Formaldehyde reactions atmosphere is mentioned: [Pg.8]    [Pg.143]    [Pg.377]    [Pg.381]    [Pg.242]    [Pg.54]    [Pg.388]    [Pg.324]    [Pg.239]    [Pg.55]    [Pg.599]    [Pg.711]    [Pg.883]   
See also in sourсe #XX -- [ Pg.229 ]




SEARCH



Atmospheric reactions

Formaldehyde reaction

Formaldehyde, atmosphere

© 2024 chempedia.info