Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formaldehyde, atmosphere

The photochemical oxidation of methane is the most important source of formaldehyde. Atmospheric formaldehyde is also produced by the photochemical oxidation of non-methane hydrocarbons. The kinetics of the reaction HCHO + OH has been studied both experimentally and theoretically.151"162 Kinetic isotopic effects for some deuterated formaldehyde isotopomers have been reported.153"155 Results of experimental and theoretical studies151"162 indicate a complex reaction mechanism consisting of three competitive reaction channels... [Pg.182]

Herrera JM, Nieves AJ, Gutierrez MDP, et al. 1997. [Citotoxicity produced by formaldehyde (atmospheric contaminant) in the rat central nervous system]. Rev Mex Cienc Farm 28 21-27. [Pg.397]

Frebel, A. (2007) Discovery of HE 1523-0901, a strongly r-process-enhanced metal-poor star with detected uranium. The Astrophysical Journal 660, L117. doi 10.1086/518122 Fricke,H. (1934) Reduction of oxygen to hydrogen peroxide by the irradiation of its aqueous solution with X-rays. Journal of Chemical Physics 2, 556-557 Friedfeld S., M. Fraser, K. Ensor, S. Tribble, D. Rehle, D. Leleux and F. Tittel (2002) Statistical analysis of primary and secondary atmospheric formaldehyde. Atmospheric Environment 36, 4161—Alls... [Pg.631]

More precisely, the rate of ozone formation depends closely on the chemical nature of the hydrocarbons present in the atmosphere. A reactivity scale has been proposed by Lowi and Carter (1990) and is largely utilized today in ozone prediction models. Thus the values indicated in Table 5.26 express the potential ozone formation as O3 formed per gram of organic material initially present. The most reactive compounds are light olefins, cycloparaffins, substituted aromatic hydrocarbons notably the xylenes, formaldehyde and acetaldehyde. Inversely, normal or substituted paraffins. [Pg.261]

Storch D G and Kushner M J 1993 Destruction mechanisms for formaldehyde in atmospheric pressure low temperature plasmas J. Appl. Phys. 73 51-5... [Pg.2813]

The reaction is generally carried out at atmospheric pressure and at 350—400°C. A variety of catalysts, eg, bases and metal salts and oxides on siUca or alumina—sihcates, have been patented (86—91). Conversions are in the 30—70% range and selectivities in the 60—90% range, depending on the catalyst and the ratio of formaldehyde to acetate. [Pg.156]

Anhydrous, monomeric formaldehyde is not available commercially. The pure, dry gas is relatively stable at 80—100°C but slowly polymerizes at lower temperatures. Traces of polar impurities such as acids, alkahes, and water greatly accelerate the polymerization. When Hquid formaldehyde is warmed to room temperature in a sealed ampul, it polymerizes rapidly with evolution of heat (63 kj /mol or 15.05 kcal/mol). Uncatalyzed decomposition is very slow below 300°C extrapolation of kinetic data (32) to 400°C indicates that the rate of decomposition is ca 0.44%/min at 101 kPa (1 atm). The main products ate CO and H2. Metals such as platinum (33), copper (34), and chromia and alumina (35) also catalyze the formation of methanol, methyl formate, formic acid, carbon dioxide, and methane. Trace levels of formaldehyde found in urban atmospheres are readily photo-oxidized to carbon dioxide the half-life ranges from 35—50 minutes (36). [Pg.491]

Silver Catalyst Process. In early formaldehyde plants methanol was oxidized over a copper catalyst, but this has been almost completely replaced with silver (75). The silver-catalyzed reactions occur at essentially atmospheric pressure and 600 to 650°C (76) and can be represented by two simultaneous reactions ... [Pg.493]

In contrast to the silver process, all of the formaldehyde is made by the exothermic reaction (eq. 23) at essentially atmospheric pressure and at 300—400°C. By proper temperature control, a methanol conversion greater than 99% can be maintained. By-products are carbon monoxide and dimethyl ether, in addition to small amounts of carbon dioxide and formic acid. Overall plant yields are 88—92%. [Pg.494]

Emissions from methanol vehicles are expected to produce lower HC and CO emissions than equivalent gasoline engines. However, methanol combustion produces significant amounts of formaldehyde (qv), a partial oxidation product of methanol. Eormaldehyde is classified as an air toxic and its emissions should be minimized. Eormaldehyde is also very reactive in the atmosphere and contributes to the formation of ozone. Emissions of NO may also pose a problem, especiaHy if the engine mns lean, a regime in which the standard three-way catalyst is not effective for NO reduction. [Pg.195]

Key resins used in the manufacture of laminates are made with formaldehyde (qv). The A-stage resins are manufactured to have low levels of free formaldehyde, less than one percent, and plant atmospheres as well as individual operators are monitored to be certain they are exposed to levels of formaldehyde that are below OSHA guidelines of 0.75 ppm (14). [Pg.537]

Temperatures in excess of 140°C are required to complete the reaction and pressurized equipment is used for alcohols boiling below this temperature provision must be made for venting ammonia without loss of alcohol. The reaction is straightforward and, ia the case of the monomethyl ether of ethylene glycol [109-86-4] can be carried out at atmospheric pressure usiag stoichiometric quantities of urea and alcohol (45). Methylolation with aqueous formaldehyde is carried out at 70—90°C under alkaline conditions. The excess formaldehyde needed for complete dimethylolation remains ia the resia and prevents more extensive usage because of formaldehyde odor problems ia the mill. [Pg.331]

It is important that the amino resins used in the postcure process should ( /) not react with the fabric before it has been fashioned into a garment, and (2) release a minimum amount of formaldehyde into the atmosphere, especially while the goods are in storage or during the cutting and sewing operations. These requirements are met, at present, with the diethylene glycol modified DMDHEU resin. [Pg.331]

A frequently cited example of protection from atmospheric corrosion is the Eiffel Tower. The narrow and, for that age, thin sections required a good priming of red lead for protection against corrosion. The top coat was linseed oil with white lead, and later coatings of ochre, iron oxide, and micaceous iron oxide were added. Since its constmction the coating has been renewed several times [29]. Modern atmospheric corrosion protection uses quick-drying nitrocellulose, synthetic resins, and reaction resins (two-component mixes). The chemist Leo Baekeland discovered the synthetic material named after him, Bakelite, in 1907. Three years later the first synthetic resin (phenol formaldehyde) proved itself in a protective paint. A new materials era had dawned. [Pg.9]

Toxic chemicals can enter the body in various ways, in particular by swallowing, inhalation and skin absorption. Skin absorption may lead to dermatitis and this can be a most annoying complaint. Whereas some chemicals may have an almost universal effect on human beings, others may attack only a few persons. A person who has worked with a given chemical for some years may suddenly become sensitised to it and from then on be unable to withstand the slightest trace of that material in the atmosphere. He may as a result also be sensitised not only to the specific chemical that caused the initial trouble but to a host of related products. Unfortunately a number of chemicals used in the plastics industry have a tendency to be dermatitic, including certain halogenated aromatic materials, formaldehyde and aliphatic amines. [Pg.103]

All frequency calculations include thermochemical analysis of the system. By default, this analysis is carried out at 298.15 K and 1 atmosphere of pressure, using the principal isotope for each element type. Here is the start of the ermochemistry output for formaldehyde ... [Pg.66]

Here is the thermochemistry parameters section of an input file for formaldehyde, requesting that the thermochemical analysis be done at 400 K, under 3 atmospheres of pressure, using the standard isotopes and without scaling ... [Pg.68]

The oxidation of n-butane represents a good example illustrating the effect of a catalyst on the selectivity for a certain product. The noncatalytic oxidation of n-butane is nonselective and produces a mixture of oxygenated compounds including formaldehyde, acetic acid, acetone, and alcohols. Typical weight % yields when n-butane is oxidized in the vapor phase at a temperature range of 360-450°C and approximately 7 atmospheres are formaldehyde 33%, acetaldehyde 31%, methanol 20%, acetone 4%, and mixed solvents 12%. [Pg.175]

The oxidative dehydrogenation of methanol to formaldehyde was choosen as model reaction by BASF for performance evaluation of micro reactors [1, 49-51, 108]. In the industrial process a methanol-air mixture of equimolecular ratio of methanol and oxygen is guided through a shallow catalyst bed of silver at 150 °C feed temperature, 600-650 °C exit temperature, atmospheric pressure and a contact time of 10 ms or less. Conversion amounts to 60-70% at a selectivity of about 90%. [Pg.314]

A reaction between organic compounds is carried out in the liquid phase in a stirred-tank reactor in the presence of excess formaldehyde. The organic reactants are nonvolatile in comparison with the formaldehyde. The reactor is vented to atmosphere via an absorber to scrub any organic material carried from the reactor. The absorber is fed with freshwater and the water from the absorber rejected to effluent. The major contaminant in the aqueous waste from the absorber is formaldehyde. [Pg.646]

From the viewpoint of a model of prebiotic chemical evolution and of the primitive atmosphere of the Earth,174175 photosynthetic reactions of C02 were also examined, and formaldehyde with various nitrogen-containing products was obtained. [Pg.386]


See other pages where Formaldehyde, atmosphere is mentioned: [Pg.88]    [Pg.517]    [Pg.143]    [Pg.377]    [Pg.381]    [Pg.242]    [Pg.127]    [Pg.220]    [Pg.192]    [Pg.923]    [Pg.415]    [Pg.1030]    [Pg.54]    [Pg.114]    [Pg.419]    [Pg.424]    [Pg.139]    [Pg.78]    [Pg.399]    [Pg.554]    [Pg.8]    [Pg.163]    [Pg.400]    [Pg.107]    [Pg.526]    [Pg.388]    [Pg.170]    [Pg.416]   
See also in sourсe #XX -- [ Pg.338 , Pg.341 , Pg.356 , Pg.359 , Pg.391 , Pg.392 ]




SEARCH



Distillation, formaldehyde solutions Atmospheric pressure

Formaldehyde atmospheric chemistry

Formaldehyde early atmosphere

Formaldehyde reactions atmosphere

Solutions, formaldehyde Atmospheric pressure

© 2024 chempedia.info