Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Formaldehyde carbonylation

Formaldehyde and its Substituted Derivatives.—Formaldehyde, Carbonyl Halides, etc. Despite the general decrease in the number of publications in this field, the high proportion describing the spectroscopic properties of these molecules has been maintained these, together with the corresponding publications for formic acid and formates, are collected in Table 9. The... [Pg.212]

Formaldehyde, Carbonyl Halides, etc. The production of thioformaldehyde monomer, by direct photolysis of thietan vapour, has been reported. Also studied is a method whereby the monomer may be trapped and analysed quantitively via its reaction with cyclopentadiene. ... [Pg.167]

You may wonder why aldehyde A doesn t react, with itself but reacts instead with formaldehyde. This is just one aspect of control in carbonyl condensations, treated thoroughly in frames 217-315 of the Carbonyl Programme. In this case, only aldehyde A can enolise but formaldehyde is more electrophilic. Now try this problem How would you... [Pg.28]

The type of alcohol produced depends on the carbonyl compound Substituents present on the carbonyl group of an aldehyde or ketone stay there—they become sub stituents on the carbon that bears the hydroxyl group m the product Thus as shown m Table 14 3 (following page) formaldehyde reacts with Grignard reagents to yield pri mary alcohols aldehydes yield secondary alcohols and ketones yield tertiary alcohols... [Pg.595]

Alcohol synthesis via the reaction of Grignard reagents with carbonyl com pounds (Section 14 6) This is one of the most useful reactions in synthetic organ ic chemistry Grignard reagents react with formaldehyde to yield primary alco hols with aldehydes to give secondary alcohols and with ketones to form terti ary alcohols... [Pg.616]

To identify the carbonyl compound and the ylide required to produce a given alkene mentally disconnect the double bond so that one of its carbons is derived from a car bonyl group and the other is derived from an ylide Taking styrene as a representative example we see that two such disconnections are possible either benzaldehyde or formaldehyde is an appropriate precursor... [Pg.732]

Although stoichiometric ethynylation of carbonyl compounds with metal acetyUdes was known as early as 1899 (9), Reppe s contribution was the development of catalytic ethynylation. Heavy metal acetyUdes, particularly cuprous acetyUde, were found to cataly2e the addition of acetylene to aldehydes. Although ethynylation of many aldehydes has been described (10), only formaldehyde has been catalyticaHy ethynylated on a commercial scale. Copper acetjlide is not effective as catalyst for ethynylation of ketones. For these, and for higher aldehydes, alkaline promoters have been used. [Pg.103]

Lactones are piepaied from formaldehyde and carbon monoxide by cyclocondensation with propylene glycol in the presence of a strong acid and a Cu(l) or Ag carbonyl catalyst (20). [Pg.366]

Addition to Carbonyl Compounds. Unlike Grignard and alkykitliium compounds, trialkylboranes are inert to carbonyl compounds. The air-catalyzed addition to formaldehyde is exceptional (373). Alkylborates are more reactive and can transfer alkyl groups to acyl halides. The reaction provides a highly chemoselective method for the synthesis of ketones (374). [Pg.319]

Ethynylation. Base-catalyzed addition of acetylene to carbonyl compounds to form -yn-ols and -yn-glycols (see Acetylene-DERIVED chemicals) is a general and versatile reaction for the production of many commercially useful products. Finely divided KOH can be used in organic solvents or Hquid ammonia. The latter system is widely used for the production of pharmaceuticals and perfumes. The primary commercial appHcation of ethynylation is in the production of 2-butyne-l,4-diol from acetylene and formaldehyde using supported copper acetyHde as catalyst in an aqueous Hquid-fiHed system. [Pg.374]

Acetylene is condensed with carbonyl compounds to give a wide variety of products, some of which are the substrates for the preparation of families of derivatives. The most commercially significant reaction is the condensation of acetylene with formaldehyde. The reaction does not proceed well with base catalysis which works well with other carbonyl compounds and it was discovered by Reppe (33) that acetylene under pressure (304 kPa (3 atm), or above) reacts smoothly with formaldehyde at 100°C in the presence of a copper acetyUde complex catalyst. The reaction can be controlled to give either propargyl alcohol or butynediol (see Acetylene-DERIVED chemicals). 2-Butyne-l,4-diol, its hydroxyethyl ethers, and propargyl alcohol are used as corrosion inhibitors. 2,3-Dibromo-2-butene-l,4-diol is used as a flame retardant in polyurethane and other polymer systems (see Bromine compounds Elame retardants). [Pg.393]

A small amount of acetylene is used in condensations with carbonyl compounds other than formaldehyde. The principal uses for the resulting acetylenic alcohols are as intermediates in the synthesis of vitamins (qv). [Pg.393]

MEK is a colorless, stable, flammable Hquid possessing the characteristic acetone-type odor of low molecular weight aUphatic ketones. MEK undergoes typical reactions of carbonyl groups with activated hydrogen atoms on adjacent carbon atoms, and condenses with a variety of reagents. Condensation of MEK with formaldehyde produces methylisopropenyl ketone (3-methyl-3-buten-2-one) ... [Pg.488]

Most likely singlet oxygen is also responsible for the red chemiluminescence observed in the reaction of pyrogaHol with formaldehyde and hydrogen peroxide in aqueous alkaU (152). It is also involved in chemiluminescence from the decomposition of secondary dialkyl peroxides and hydroperoxides (153), although triplet carbonyl products appear to be the emitting species (132). [Pg.270]

Propionic acid is accessible through the Hquid-phase carbonylation of ethylene over a nickel carbonyl catalyst (104), or via ethylene and formic acid over an iridium catalyst (105). Condensation of propionic acid with formaldehyde over a supported cesium catalyst gives MAA directiy with conversions of 30—40% and selectivities of 80—90% (106,107). Catalyst lifetime can be extended by adding low levels (several ppm) of cesium to the feed stream (108). [Pg.253]

Reaction With Carbonyl Compounds. Primary and secondary nitroparaffins undergo aldol-type reactions with a variety of aldehydes and ketones to give nitro alcohols (11). Those derived from the lower nitroparaffins and formaldehyde are available commercially (see Nitro alcohols). Nitro alcohols can be reduced to the corresponding amino alcohols (see Alkanolamines). [Pg.100]

The addition of P—H bonds across a carbonyl function leads to the formation of a-hydroxy-substituted phosphines. The reaction is acid-cataly2ed and appears to be quite general with complete reaction of each P—H bond if linear aUphatic aldehydes are used. Steric considerations may limit the product to primary or secondary phosphines. In the case of formaldehyde, the quaternary phosphonium salt [124-64-1] is obtained. [Pg.380]

Hydroxypyrroles. Pyrroles with nitrogen-substituted side chains containing hydroxyl groups are best prepared by the Paal-Knorr cyclization. Pyrroles with hydroxyl groups on carbon side chains can be made by reduction of the appropriate carbonyl compound with hydrides, by Grignard synthesis, or by iasertion of ethylene oxide or formaldehyde. For example, pyrrole plus formaldehyde gives 2-hydroxymethylpyrrole [27472-36-2] (24). The hydroxymethylpyrroles do not act as normal primary alcohols because of resonance stabilization of carbonium ions formed by loss of water. [Pg.358]

Pyrazolones show a great variety of reactions with carbonyl compounds (B-76MI40402). For instance, antipyrine is 4-hydroxymethylated by formaldehyde and it also undergoes the Mannich reaction. Tautomerizable 2-pyrazolin-5-ones react with aldehydes to yield compound (324) and with acetone to form 4-isopropylidene derivatives or dimers (Scheme 8 Section 4.02.1.4.10). [Pg.242]

Chloral forms well-crystallized adducts (126) with diaziridines containing at least one NH group (B-67MI50800). Carbonyl addition products to formaldehyde or cyclohexanone were also described. Mixtures of aldehydes and ammonia react with unsubstituted diaziridines with formation of a triazolidine ring (128). Fused diaziridines like (128) are always obtained in ring synthesis of diaziridines (127) from aldehyde, ammonia and chloramine. The existence of three stereoisomers of compounds (128) was demonstrated (76JOC3221). Diaziridines form Mannich bases with morpholine and formaldehyde (64JMC626), e.g. (129). [Pg.213]

Practically all diaziridines (151) can be hydrolyzed by acids to a carbonyl compound and a hydrazine derivative. The only exceptions are diaziridines derived from formaldehyde, in which acid catalyzed N—N cleavage successfully competes with slow hydrolysis. Monoalkylhydrazines are formed in 80-95% yield, A/,A/ -dialkylhydrazines in 65-85% yield (B-67MI50800). [Pg.216]

Two substituents on two N atoms increase the number of diaziridine structures as compared with oxaziridines, while some limitations as to the nature of substituents on N and C decrease it. Favored starting materials are formaldehyde, aliphatic aldehydes and ketones, together with ammonia and simple aliphatic amines. Aromatic amines do not react. Suitable aminating agents are chloramine, N-chloroalkylamines, hydroxylamine-O-sulfonic acid and their simple alkyl derivatives, but also oxaziridines unsubstituted at nitrogen. Combination of a carbonyl compound, an amine and an aminating agent leads to the standard procedures of diaziridine synthesis. [Pg.230]

In the above examples the polymerisation takes place by the opening of a carbon-carbon double bond. It is also possible to open carbonyl carbon-oxygen double bonds and nitrile carbon-nitrogen triple bonds. An example of the former is the polymerisation of formaldehyde to give polyformaldehyde (also known as polyoxymethylene and polyacetal) (Figure 2.3). [Pg.20]

BS ISO 16000 Indoor formaldehyde and other carbonyl compounds Active and diffusive sampling... [Pg.357]


See other pages where Formaldehyde carbonylation is mentioned: [Pg.921]    [Pg.249]    [Pg.817]    [Pg.921]    [Pg.608]    [Pg.611]    [Pg.781]    [Pg.921]    [Pg.249]    [Pg.817]    [Pg.921]    [Pg.608]    [Pg.611]    [Pg.781]    [Pg.1119]    [Pg.168]    [Pg.438]    [Pg.517]    [Pg.67]    [Pg.108]    [Pg.113]    [Pg.181]    [Pg.414]    [Pg.413]    [Pg.819]    [Pg.284]    [Pg.199]    [Pg.464]    [Pg.753]    [Pg.815]    [Pg.569]   
See also in sourсe #XX -- [ Pg.626 ]




SEARCH



© 2024 chempedia.info