Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

For molybdenum oxide

Table I. Composition and Formation Temperatures for Molybdenum Oxides... Table I. Composition and Formation Temperatures for Molybdenum Oxides...
For molybdenum oxide, for example, it is shown that the adsorption of 4% (in mass) of polyanihne is enough to enhance the electrode response, affecting the potential in which the formation of the so-called molybdenum blue is formed. For arsenic oxide, it is shown that the modification of the oxide surface by 13% polyaniline adsorption was responsible for enhancement of the oxide response to apphed potential as well as for a change in the potentials observed for oxidation-reduction processes occurring in the unmodified oxide. [Pg.52]

Figure 7.13 High-resolution XPS data of the Mo 3-D core level peaks observed for molybdenum oxide thin films prepared from (a) anhydrous and (b) ambient-based precursor solutions as a function of annealing temperature in a nitrogen atmosphere. (Reprinted from ref. 74, with permission from John Wiley and Sons, http //onlinelibrary.wiley.com/ doi/10.1002/adma.201003065/abstract.)... Figure 7.13 High-resolution XPS data of the Mo 3-D core level peaks observed for molybdenum oxide thin films prepared from (a) anhydrous and (b) ambient-based precursor solutions as a function of annealing temperature in a nitrogen atmosphere. (Reprinted from ref. 74, with permission from John Wiley and Sons, http //onlinelibrary.wiley.com/ doi/10.1002/adma.201003065/abstract.)...
It is used in certain nickel-based alloys, such as the "Hastelloys(R)" which are heat-resistant and corrosion-resistant to chemical solutions. Molybdenum oxidizes at elevated temperatures. The metal has found recent application as electrodes for electrically heated glass furnaces and foreheaths. The metal is also used in nuclear energy applications and for missile and aircraft parts. Molybdenum is valuable as a catalyst in the refining of petroleum. It has found applications as a filament material in electronic and electrical applications. Molybdenum is an... [Pg.78]

Many low molecular weight aldehydes and ketones are important industrial chem icals Formaldehyde a starting material for a number of plastics is prepared by oxida tion of methanol over a silver or iron oxide/molybdenum oxide catalyst at elevated temperature... [Pg.711]

Early catalysts for acrolein synthesis were based on cuprous oxide and other heavy metal oxides deposited on inert siHca or alumina supports (39). Later, catalysts more selective for the oxidation of propylene to acrolein and acrolein to acryHc acid were prepared from bismuth, cobalt, kon, nickel, tin salts, and molybdic, molybdic phosphoric, and molybdic siHcic acids. Preferred second-stage catalysts generally are complex oxides containing molybdenum and vanadium. Other components, such as tungsten, copper, tellurium, and arsenic oxides, have been incorporated to increase low temperature activity and productivity (39,45,46). [Pg.152]

Molybdenum Oxides. Molybdenum was one of the first elements used to retard the flames of ceUulosics (2). Mote recently it has been used to impart flame resistance and smoke suppression to plastics (26). Molybdic oxide, ammonium octamolybdate, and zinc molybdate ate the most widely used molybdenum flame retardants. Properties ate given in Table 5. These materials ate recommended almost exclusively for poly(vinyl chloride), its alloys, and unsaturated polyesters (qv). [Pg.458]

Molybdenum Oxide. Molybdenum compounds incorporated into flexible PVC not only increase flame resistance, but also decrease smoke evolution. In Table 10 the effect of molybdenum oxide on the oxygen index of a flexible PVC containing 50 parts of a plasticizer is compared with antimony oxide. Antimony oxide is the superior synergist for flame retardancy but has Httle or no effect on smoke evolution. However, combinations of molybdenum oxide and antimony oxide may be used to reduce the total inorganic flame-retardant additive package, and obtain improved flame resistance and reduced smoke. [Pg.460]

Oxidation of methanol to formaldehyde with vanadium pentoxide catalyst was first patented in 1921 (90), followed in 1933 by a patent for an iron oxide—molybdenum oxide catalyst (91), which is stiU the choice in the 1990s. Catalysts are improved by modification with small amounts of other metal oxides (92), support on inert carriers (93), and methods of preparation (94,95) and activation (96). In 1952, the first commercial plant using an iron—molybdenum oxide catalyst was put into operation (97). It is estimated that 70% of the new formaldehyde installed capacity is the metal oxide process (98). [Pg.494]

The conversion of CO to CO2 can be conducted in two different ways. In the first, gases leaving the gas scmbber are heated to 260°C and passed over a cobalt—molybdenum catalyst. These catalysts typically contain 3—4% cobalt(II) oxide [1307-96-6] CoO 13—15% molybdenum oxide [1313-27-5] MoO and 76—80% alumina, JSifDy and are offered as 3-mm extmsions, SV about 1000 h . On these catalysts any COS and CS2 are converted to H2S. Operating temperatures are 260—450°C. The gases leaving this shift converter are then scmbbed with a solvent as in the desulfurization step. After the first removal of the acid gases, a second shift step reduces the CO content in the gas to 0.25—0.4%, on a dry gas basis. The catalyst for this step is usually Cu—Zn, which may be protected by a layer of ZnO. [Pg.423]

Benzene-Based Catalyst Technology. The catalyst used for the conversion of ben2ene to maleic anhydride consists of supported vanadium oxide [11099-11-9]. The support is an inert oxide such as kieselguhr, alumina [1344-28-17, or sUica, and is of low surface area (142). Supports with higher surface area adversely affect conversion of benzene to maleic anhydride. The conversion of benzene to maleic anhydride is a less complex oxidation than the conversion of butane, so higher catalyst selectivities are obtained. The vanadium oxide on the surface of the support is often modified with molybdenum oxides. There is approximately 70% vanadium oxide and 30% molybdenum oxide [11098-99-0] in the active phase for these fixed-bed catalysts (143). The molybdenum oxide is thought to form either a soUd solution or compound oxide with the vanadium oxide and result in a more active catalyst (142). [Pg.455]

The first-stage catalysts for the oxidation to methacrolein are based on complex mixed metal oxides of molybdenum, bismuth, and iron, often with the addition of cobalt, nickel, antimony, tungsten, and an alkaU metal. Process optimization continues to be in the form of incremental improvements in catalyst yield and lifetime. Typically, a dilute stream, 5—10% of isobutylene tert-huty alcohol) in steam (10%) and air, is passed over the catalyst at 300—420°C. Conversion is often nearly quantitative, with selectivities to methacrolein ranging from 85% to better than 95% (114—118). Often there is accompanying selectivity to methacrylic acid of an additional 2—5%. A patent by Mitsui Toatsu Chemicals reports selectivity to methacrolein of better than 97% at conversions of 98.7% for a yield of methacrolein of nearly 96% (119). [Pg.253]

Chemical Properties. Molybdenum has good resistance to chemical attack by mineral acids, provided that oxidizing agents ate not present. The metal also offers excellent resistance to attack by several liquid metals. The approximate temperature limits for molybdenum to be considered for long-time service while in contact with various metals in the hquid state ate as follows ... [Pg.465]

Aqueous Chemistry. Molybdenum has weU-characterized aqueous chemistry in the five oxidation states, VI, V, IV, III, and II. A listing of aqua ions is given in Table 2. Except for the Mo(VI) species all of the aqua ions are only soluble or stable in acidic media (17). The range of aqueous ions known for molybdenum is far broader than that of other elements. [Pg.475]

In addition to these principal commercial uses of molybdenum catalysts, there is great research interest in molybdenum oxides, often supported on siHca, ie, MoO —Si02, as partial oxidation catalysts for such processes as methane-to-methanol or methane-to-formaldehyde (80). Both O2 and N2O have been used as oxidants, and photochemical activation of the MoO catalyst has been reported (81). The research is driven by the increased use of natural gas as a feedstock for Hquid fuels and chemicals (82). Various heteropolymolybdates (83), MoO.-containing ultrastable Y-zeoHtes (84), and certain mixed metal molybdates, eg, MnMoO Ee2(MoO)2, photoactivated CuMoO, and ZnMoO, have also been studied as partial oxidation catalysts for methane conversion to methanol or formaldehyde (80) and for the oxidation of C-4-hydrocarbons to maleic anhydride (85). Heteropolymolybdates have also been shown to effect ethylene (qv) conversion to acetaldehyde (qv) in a possible replacement for the Wacker process. [Pg.477]

Flame and Smoke Retardants. Molybdenum compounds are used extensively as flame retardants (qv) (93,94) in the formulation of halogenated polymers such as PVC, polyolefins, and other plastics elastomers and fabrics. An incentive for the use of molybdenum oxide and other molybdenum smoke and flame retardants is the elimination of the use of arsenic trioxide. Although hydrated inorganics are often used as flame retardants, and thought to work by releasing water of crystallization, anhydrous molybdenum oxides are effective. Presumably the molybdenum oxides rapidly form... [Pg.477]

Mixed Metal Oxides and Propylene Ammoxidation. The best catalysts for partial oxidation are metal oxides, usually mixed metal oxides. For example, phosphoms—vanadium oxides are used commercially for oxidation of / -butane to give maleic anhydride, and oxides of bismuth and molybdenum with other components are used commercially for oxidation of propylene to give acrolein or acrylonitrile. [Pg.180]

Liquid-Phase Epoxidation with Hydroperoxides. Molybdenum, vanadium, and tungsten have been proposed as Hquid-phase catalysts for the oxidation of the ethylene by hydroperoxides to ethylene oxide (205). tert- uty hydroperoxide is the preferred oxidant. The process is similar to the arsenic-catalyzed route, and iacludes the use of organometaUic complexes. [Pg.461]

The device for nitrogen oxides based on chemiluminescence measures the nitrogen monoxide concentration. The same equipment can be used to measure the concentration of nitrogen dioxide. Nitrogen dioxide is reduced to nitrogen monoxide in a converter by a molybdenum catalyst. In order to... [Pg.1301]

High-density polyethylene (HDPE) is produced by a low-pressure process in a fluid-bed reactor. Catalysts used for HDPE are either of the Zieglar-type (a complex of A1(C2H5)3 and a-TiCl4) or silica-alumina impregnated with a metal oxide such as chromium oxide or molybdenum oxide. [Pg.327]

Although molybdenum is resistant to molten glass, except leaded, molybdenum components not coated with glass but exposed to the oxidising furnace atmosphere corrode rapidly due to volatilisation of molybdenum oxide above 370°C. To overcome this, stirrers etc. for use in glass plant are physically clad with platinum sheet in vulnerable areas. Modern plating techniques have enabled dense platinum coatings to be put onto the surface of the molybdenum and it is expected that this technique will be exploited further in the near future. [Pg.849]

Table 7.18 shows that the rate constants at 928°C for the Hastelloy alloys are considerably higher than those for molybdenum-free compositions, although the very low chromium content of Hastelloy W is doubtless a significant factor in this connection. It is noteworthy that the molybdenum-containing low-chromium alloy listed in Table 7.19 is generally superior to the others but this high resistance to oxidation is associated with its relatively high aluminium content. [Pg.1049]

Dithiol is a less selective reagent than thiocyanate for molybdenum. Tungsten interferes most seriously but does not do so in the presence of tartaric acid or citric acid (see Section 17.34). Tin does not interfere if the absorbance is read at 680 nm. Strong oxidants oxidise the reagent iron(III) salts should be reduced with potassium iodide solution and the liberated iodine removed with thiosulphate. [Pg.693]

Formaldehyde, produced by dehydrogenation of methanol, is used almost exclusively in die syndiesis of phenolic resins (Fig. 7.2). Iron oxide, molybdenum oxide, or silver catalysts are typically used for preparing formaldehyde. Air is a safe source of oxygen for this oxidation process. [Pg.377]

K. Chen, S. Xie, A.T. Bell, and E. Iglesia, Alkali effects of molybdenum oxide catalysts for the oxidative dehydrogenation of propane, J. Catal. 195, 244-252 (2000). [Pg.331]

The partial oxidation of propylene occurs via a similar mechanism, although the surface structure of the bismuth-molybdenum oxide is much more complicated than in Fig. 9.17. As Fig. 9.18 shows, crystallographically different oxygen atoms play different roles. Bridging O atoms between Bi and Mo are believed to be responsible for C-H activation and H abstraction from the methyl group, after which the propylene adsorbs in the form of an allyl group (H2C=CH-CH2). This is most likely the rate-determining step of the mechanism. Terminal O atoms bound to Mo are considered to be those that insert in the hydrocarbon. Sites located on bismuth activate and dissociate the O2 which fills the vacancies left in the coordination of molybdenum after acrolein desorption. [Pg.372]

Acrolein, in turn, can be oxidized further to acrylic acid. The catalyst for this step is a mixed vanadium-molybdenum oxide. [Pg.373]

The similarity of the results obtained for finite elusters and the infinite slab allows to eonclude in favour of the validity of the eluster model of adequate size (6 or 8 molybdenum atoms). In addition to the chemisorption of organic molecules on solid surfaces which is generally considered as a localized phenomenon, the interaction between molybdenum oxide and an adsorbate can also be represented by a loeal eomplex formed by a finite eluster and the adsorbed molecule. Indeed, the study of the evolution of the electronic properties as a funetion of the cluster size shows that, for a eluster eontaining 6 or 8 molybdenum atoms, most of the electronic properties converge towards limit values. This eonvergence is sensitive to the direction of the cluster growth. On the other hand, the electronic properties of the (001), (010) and (100) faces are not identieal, the type of surface atoms being different these results allow to predict that the characteristics of the chemisorption step will depend on the particular face on which it takes place. [Pg.438]


See other pages where For molybdenum oxide is mentioned: [Pg.111]    [Pg.987]    [Pg.172]    [Pg.306]    [Pg.111]    [Pg.987]    [Pg.172]    [Pg.306]    [Pg.82]    [Pg.126]    [Pg.477]    [Pg.47]    [Pg.240]    [Pg.173]    [Pg.2449]    [Pg.842]    [Pg.210]    [Pg.444]    [Pg.976]    [Pg.29]    [Pg.274]    [Pg.33]    [Pg.74]    [Pg.95]   
See also in sourсe #XX -- [ Pg.214 ]




SEARCH



Oxides molybdenum oxide

© 2024 chempedia.info