Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Foods instrumentation

G. S. Birth. Research in food instrumentation. Instrument Society of America, 1963. [Pg.5]

Computer Integrated Manufacturing, Instrumentation, and Controls. Large food processing firms are exploring the use of... [Pg.461]

In 1994, Nam and King (68) developed a SFE/SFC/GC instrumentation system for the quantitative analysis of organochlorine and organophosphorus pesticide residues in fatty food samples (chicken fat, ground beef and lard). In this way, SFC was used as an on-line clean-up step to remove extracted material. The fraction containing pesticide residues is then diverted and analysed by GC. [Pg.242]

The method, obviously, is subjective, the precision and speed of the match depending upon the observer and his experience. Results on foods have usually been expressed in terms of color disks, which are different for each product and which must be carefully standardized. [Conversions to standard colorimetric systems of notation can be made (12), provided suitable colorimetric data are available for the disks used.] Furthermore, instruments suitable for the most precise work by this method are not at the present time commercially available. [Pg.7]

Photoelectric-Colorimetric Method. Although the recording spectrophotometer is, for food work at least, a research tool, another instrument, the Hunter multipurpose reflectometer (4), is available and may prove to be applicable to industrial quality control. (The newer Hunter color and color difference meter which eliminates considerable calculation will probably be even more directly applicable. Another make of reflection meter has recently been made available commercially that uses filters similar to those developed by Hunter and can be used to obtain a similar type of data.) This instrument is not a spectrophotometer, for it does not primarily measure the variation of any property of samples with respect to wave length, but certain colorimetric indexes are calculated from separate readings with amber, blue, and green filters, designated A, B, and G, respectively. The most useful indexes in food color work obtainable with this type of instrument have been G, which gives a... [Pg.9]

The problem of permeability exists whenever a plastic material is exposed to vapor, moisture, or liquids. Typical cases are electrical batteries, instruments, components installed underground, encapsulated electrical components, food packaging, and various fluid-material containers. In these cases, a plastic material is called upon to form a barrier either to minimize loss of vapor or fluid or to prevent the entrance of vapor or fluid into a product. From the designers viewpoint, the tolerable amount of permeation established by test under conditions of usage with a prototype product of correct shape and material is the only direct answer. [Pg.308]

The migration of package ingredients directly into a food product is often difficult to analyze instrumentally because of interference from food ingredients. Some of these analyses have been made, but it is generally preferable to use food simulating solvents listed in FDA regulations and to carry out extraction tests under the conditions described. [Pg.77]

These objective, quantitative tests have shown that nitrile containers should protect the taste and odor of packaged foods and beverages. But the primary consideration in judging overall package performance, once safety is assured, rests on the subjective evaluations of taste, odor, and appearance. It is well known that the animal senses, in many instances, are far more sensitive than the best instruments and also are capable of integrating the individual effects of the several influences on product quality. [Pg.78]

Carbon filters find particular application as prefilters for RO and ion-exchange processes in the production of high purity FW. They are also used in clean-steam boilers and other types of steam generators where the steam is ultimately destined for application in food or beverage production, pharmaceuticals, electronics, surgical instrument sterilization, and similar processes. [Pg.323]

No contribution to taste or smell and safe to use where steam comes into contact with air, food, surgical instruments, industrial process, etc. [Pg.482]

D-value (decimal reduction time, DRT) is the time in minutes required to destroy 90% of a population of cells. The D-value has little relevance to the sterilization of medicines for injection, surgical instruments or dressings, where a process designed to kill all living spores must be developed. The D-value is used extensively in the food industry. [Pg.13]

In the preceding section, we presented principles of spectroscopy over the entire electromagnetic spectrum. The most important spectroscopic methods are those in the visible spectral region where food colorants can be perceived by the human eye. Human perception and the physical analysis of food colorants operate differently. The human perception with which we shall deal in Section 1.5 is difficult to normalize. However, the intention to standardize human color perception based on the abilities of most individuals led to a variety of protocols that regulate in detail how, with physical methods, human color perception can be simulated. In any case, a sophisticated instrumental set up is required. We present certain details related to optical spectroscopy here. For practical purposes, one must discriminate between measurements in the absorbance mode and those in the reflection mode. The latter mode is more important for direct measurement of colorants in food samples. To characterize pure or extracted food colorants the absorption mode should be used. [Pg.14]

Sinnecker, P. et al.. Relationship between color (instrumental and visual) and chlorophyll contents in soybean seeds during ripening, J. Agric. Food Chem., 50, 3961, 2002. [Pg.446]

GENERAL AND SPECIFIC INSTRUMENTAL METHODS FOR ANALYZING NATURAL FOOD COLORANTS... [Pg.522]

Food colorants are analyzed either by direct inspection (sensorial analyses) or by physical or physicochemical instrumental methods. Direct inspections determine the sensorial attribute of color, frequently combined with assessments of smells and flavors. Visual color assessment is subjective and may be used with reliable visual evaluations controlling multiple variables. [Pg.522]

Instrumental color measurements eliminate subjectivity, are more precise, take less time, and are simpler to perform. However, to evaluate instrumental results properly, the physics of the measurement processes must be considered. Three types of color measurement instruments are used for food the monochromatic colorimeter, the tristimulus colorimeter, and the colorimetric spectrophotometer. [Pg.522]

The current trend in analytical chemistry applied to evaluate food quality and safety leans toward user-friendly miniaturized instruments and laboratory-on-a-chip applications. The techniques applied to direct screening of colorants in a food matrix include chemical microscopy, a spatial representation of chemical information from complex aggregates inside tissue matrices, biosensor-based screening, and molec-ularly imprinted polymer-based methods that serve as chemical alternatives to the use of immunosensors. [Pg.523]

Rente, D. and Charalampous, G., Eds., Instrumental Methods in Food and Beverage Analysis, Elsevier, Amsterdam, 1998. [Pg.526]

Carmen Socaciu was bom in Cluj-Napoca, Romania and earned a BSc in chemistry in 1976, an MSc in 1977, and a PhD in 1986 from the University Babes-Bolyai in Cluj-Napoca, an important academic centre located in the Transylvania region. Dr. Socaciu worked as a researcher in medical and cellular biochemistry for more than 10 years, and became a lecturer in 1990 and full professor in 1998 in the Department of Chemistry and Biochemistry of the University of Agricultural Sciences and Veterinary Medicine (USAMV) in Cluj-Napoca. She extended her academic background in pure chemistry (synthesis and instrumental analysis) to the life sciences (agrifood chemistry and cellular biochemistry). Her fields of competence are directed especially toward natural bioactive phytochemicals (carotenoids, phenolics, flavonoids), looking to advanced methods of extraction and analysis and to their in vitro actions on cellular metabolism, their effects as functional food ingredients, and their impacts on health. [Pg.651]

The experimental designs discussed in Chapters 24-26 for optimization can be used also for finding the product composition or processing condition that is optimal in terms of sensory properties. In particular, central composite designs and mixture designs are much used. The analysis of the sensory response is usually in the form of a fully quadratic function of the experimental factors. The sensory response itself may be the mean score of a panel of trained panellists. One may consider such a trained panel as a sensitive instrument to measure the perceived intensity useful in describing the sensory characteristics of a food product. [Pg.444]

Hale, A. B., Carpenter, C. E., and Walsh, M. K. (2002). Instrumental and consumer evaluation of beef patties extended with extrusion-textured whey proteins. /. Food Sci. 67,1267-1270. [Pg.196]


See other pages where Foods instrumentation is mentioned: [Pg.966]    [Pg.353]    [Pg.21]    [Pg.38]    [Pg.3]    [Pg.2043]    [Pg.862]    [Pg.94]    [Pg.408]    [Pg.656]    [Pg.6]    [Pg.8]    [Pg.103]    [Pg.153]    [Pg.399]    [Pg.306]    [Pg.364]    [Pg.9]    [Pg.93]    [Pg.305]    [Pg.441]    [Pg.97]    [Pg.437]    [Pg.218]    [Pg.90]    [Pg.238]    [Pg.3]   
See also in sourсe #XX -- [ Pg.9 , Pg.155 , Pg.156 ]




SEARCH



© 2024 chempedia.info