Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Visible spectral region

The reverse reaction, the photochemical ring opening of sphopyranes (22b), takes place by absorption ia the short-wave uv region of the spectmm and the merocyanine isomer (22a) is obtained. The electron transition of (22a) is ia the visible spectral region, whereas (22b) is colorless. As a result, the dye solution can change from colorless to a colored solution (87,88). These photochromic reactions can be used for technical appHcations (89). [Pg.496]

Photopolymerization. In many cases polymerization is initiated by ittadiation of a sensitizer with ultraviolet or visible light. The excited state of the sensitizer may dissociate directiy to form active free radicals, or it may first undergo a bimoleculat electron-transfer reaction, the products of which initiate polymerization (14). TriphenylaLkylborate salts of polymethines such as (23) ate photoinitiators of free-radical polymerization. The sensitivity of these salts throughout the entire visible spectral region is the result of an intra-ion pair electron-transfer reaction (101). [Pg.496]

Historically, the visible emission lines shown in Figure 15-3 were the first atomic hydrogen lines discovered. They were found in the spectrum of the sun by W. H. Wollaston in 1802. In 1862, A. J. Angstrom announced that there must be hydrogen in the solar atmosphere. These lines were detected first because of the lesser experimental difficulties in the visible spectral region. They are called the "Balmer series because J. J. Balmer was able to formulate a simple mathematical relation among the frequencies (in It S). The ultraviolet series shown in Figure 15-3 was... [Pg.258]

Thus, the process of PAN transformation under the effect of IR radiation proceeds with considerable self-acceleration. The irradiation of uniaxially oriented PAN films gives a polymer with a distinct anisotropy of optical properties, dichroism in the visible spectral region in particular. Figure 8 presents dichroism curves [D =/(X)] at various angles (ip) between the polarization plane and the orientation axis. The same figure shows the dependence D =f(uniaxially oriented film. [Pg.16]

If the system under consideration is chemically inert, the laser excitation only induces heat, accompanied by density and pressure waves. The excitation can be in the visible spectral region, but infrared pumping is also possible. In the latter case, the times governing the delivery of heat to the liquid are those of vibrational population relaxation. They are very short, on the order of 1 ps this sort of excitation is thus impulsive. Contrary to a first impression, the physical reality is in fact quite subtle. The acoustic horizon, described in Section VC is at the center of the discussion [18, 19]. As laser-induced perturbations cannot propagate faster than sound, thermal expansion is delayed at short times. The physicochemical consequences of this delay are still entirely unknown. The liquids submitted to investigation are water and methanol. [Pg.279]

In the preceding section, we presented principles of spectroscopy over the entire electromagnetic spectrum. The most important spectroscopic methods are those in the visible spectral region where food colorants can be perceived by the human eye. Human perception and the physical analysis of food colorants operate differently. The human perception with which we shall deal in Section 1.5 is difficult to normalize. However, the intention to standardize human color perception based on the abilities of most individuals led to a variety of protocols that regulate in detail how, with physical methods, human color perception can be simulated. In any case, a sophisticated instrumental set up is required. We present certain details related to optical spectroscopy here. For practical purposes, one must discriminate between measurements in the absorbance mode and those in the reflection mode. The latter mode is more important for direct measurement of colorants in food samples. To characterize pure or extracted food colorants the absorption mode should be used. [Pg.14]

Close to silica fibres are silicate fibres drawn from optical glasses. Silicate fibres are typically applicable in the visible spectral region. Their optical losses in the visible region usually reach much higher values than silica fibres - at least 102dB/km. On the other hand, the refractive index can be tailored in a large interval (from 1.5 for the BK-class to 1.95 for the... [Pg.64]

Optical fibres composed of plastics are also transparent in the visible spectral region but optical losses reach 102 - 103 dB/km13. Their refractive index varies from 1.35 to 1.6 depending on the kind of polymer used (e.g. polymethymethacrylate PMMA -1.49). The chemical resistance is much worse than that of silica fibres and thermal stability is incomparable. On the other hand, low temperature processes of plastic fibre preparation allow us mix the starting polymer with organic dyes which enables the production of luminescent fibres suitable e.g. for fluorescence-based sensing13. [Pg.65]

Emissions from five different excited electronic states of 02 throughout the visible spectral region of 400-800 nm have been identified [17], placing a practical limit on the concentration of O atoms that can be used as a chemiluminescence reagent since the background emission increases quadratically in O atom concentration. [Pg.360]

Figures 7.5 and 7.6 give the measured spectral reflectances and transmittances of fabrics. It is clear from Figure 7.5 that color (6,white 7,black 1,yellow) has a significant effect in reflecting solar irradiance, and also we see why these colors can be discriminated in the visible spectral region of 0.6 pm. However, in the spectral range relevant to fire conditions, color has less of an effect. Also, the reflectance of dirty (5a) or wet (5b) fabrics drop to <0.1. Hence, for practical purposes in fire analyses, where no other information is available, it is reasonable to take the reflectance to be zero, or the absorptivity as equal to 1. This is allowable since only thin fabrics (Figure 7.6) show transmittance levels of 0.2 or less and decrease to near zero after 2 pm. Figures 7.5 and 7.6 give the measured spectral reflectances and transmittances of fabrics. It is clear from Figure 7.5 that color (6,white 7,black 1,yellow) has a significant effect in reflecting solar irradiance, and also we see why these colors can be discriminated in the visible spectral region of 0.6 pm. However, in the spectral range relevant to fire conditions, color has less of an effect. Also, the reflectance of dirty (5a) or wet (5b) fabrics drop to <0.1. Hence, for practical purposes in fire analyses, where no other information is available, it is reasonable to take the reflectance to be zero, or the absorptivity as equal to 1. This is allowable since only thin fabrics (Figure 7.6) show transmittance levels of 0.2 or less and decrease to near zero after 2 pm.
A spectrum is a plot of some measure of the electromagnetic radiation absorbed by a sample versus the wavelength or energy of the electromagnetic radiation. For example, it is common practice to plot the absorbance versus wavelength for spectra in the ultraviolet and visible spectral regions as shown below (Fig. 5.1). [Pg.121]

The nitrosonium cation bears a formal relationship to the well-studied halogens (i.e. X2 = I2, Br2, and Cl2), with both classes of structurally simple diatomic electron acceptors forming an extensive series of intermolecular electron donor-acceptor (EDA) complexes that show well-defined charge-transfer absorption bands in the UV-visible spectral region. Mulliken (1952a,b 1964 Mulliken and Person, 1969) originally identified the three possible nonbonded structures of the halogen complexes as in Chart 7, and the subsequent X-ray studies established the axial form II to be extant in the crystals of the benzene complexes with Cl2 and Br2 (Hassel and Stromme, 1958, 1959). In these 1 1 molecular complexes, the closest approach of the... [Pg.225]

Of major interest in geochemistry and in natural water systems are semiconducting minerals for which the absorption of light occurs in the near UV or visible spectral region and as a result of which redox processes at the mineral-water interface are induced or enhanced. Table 10.1 gives band gap energies of a variety of semiconductors. [Pg.346]

One of the most frequently investigated electron acceptors is the l2-molecule, the EDA-complexes of which with a large number of unsaturated compounds have been spectroscopically investigated in the ultraviolet and visible spectral region (Briegleb, 1961). [Pg.254]

Crown glass has a refractive index of 1.51 in the visible spectral region. Calculate the reflectivity of the air-glass interface, and determine the transmission of a typical glass window. [Pg.679]

This result may be substituted into Eq. 15-40 to calculate Oir(A). Classical actinometers that are used in this way include the potassium ferrioxalate actinometer that can be employed both in the uv and visible spectral region the Reinecke s salt actinometer (visible region), and the ort/io-nitrobenzaldehyde actinometer (uv region). For further description of these actinometers we refer to the literature (e.g., Leifer, 1988, pp. 148-151). [Pg.646]

As mentioned, the photocatalytic activation of Ti02 requires UV irradiation, and hence the semiconductor performance in the solar spectrum is inefficient. A solution to switch the photocatalytic activity to the visible spectral region was described by covalent attachment of an eosin dye monolayer to the semiconductor oxide particles of a Pd-Ti02 catalyst.168 The improved photocatalytic activities, specifically, the efficient formation of formate, are attributed to the effective injection of electrons from the excited dye into the semiconductor conduction band. [Pg.98]

An expression has been derived by Marcus34 and Hush35 for A0 assuming the solvent to be a structureless dielectric continuum characterized by the macroscopic dielectric constants Dop and Ds. D0p and Ds are the optical and static dielectric constants, respectively, and Dop = n2 where n is the index of refraction in the visible spectral region. In the limit that the reactants can be treated as two non-interpenetrating spheres, AQ is given by equation (23). [Pg.341]

For SiO, maximum reflectance in the visible spectral region is achieved at a thickness of about 1400 micrometers. Rapid SiO evaporation reduces die reflectance at shorter wavelengdis. [Pg.1611]


See other pages where Visible spectral region is mentioned: [Pg.318]    [Pg.26]    [Pg.138]    [Pg.21]    [Pg.73]    [Pg.73]    [Pg.74]    [Pg.75]    [Pg.515]    [Pg.5]    [Pg.15]    [Pg.131]    [Pg.147]    [Pg.289]    [Pg.66]    [Pg.425]    [Pg.146]    [Pg.112]    [Pg.79]    [Pg.102]    [Pg.123]    [Pg.48]    [Pg.302]    [Pg.229]    [Pg.209]    [Pg.309]    [Pg.303]    [Pg.209]   
See also in sourсe #XX -- [ Pg.40 , Pg.70 ]




SEARCH



Spectral regions

Visible region

© 2024 chempedia.info