Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Polymers fluoropolymers

Sperati, C. A., Physical Constants of Fluoropolymers, Polymer Handbook, 3 Ed., Vol. 1, Polymerization and Depolymerization, John Wiley Sons, New York (1989)... [Pg.114]

Massey, S., P. Cloutier, P. Hale et al. 2008b. Low-energy electron and x-ray degradation of biomedical plasma-fluoropolymer. Polym Degrad Stab 93 383-391. [Pg.397]

Bamford, D., Dlubek, G., Dommet, G., Horing, S., Liipke, T., Kilburn, D., and Alam, M. A., Positron/positronium annihilation as a probe for chemical enviromnents of free volume holes in fluoropolymers. Polymer, 47, 3486-3493 (2006b). [Pg.461]

Fluoropolymers Polymers prepared Irom unsaturated fluorine-containing hydrocarbons. Has good chemical resistance, weatherability, thermal stability, antiadhesive properties, low friction, and flammability, but low creep resistance, strength, and difficulty processing. The properties vary with the fluorine content. Processed by extrusion and molding. Used as liners in chemical apparatus, in bearings, films, coatings, and containers. Also called Fluoroplastics. [Pg.195]

Perfluorinated Fluoropolymers - Polymer consisting of only carbon and fluorine (and an occasional oxygen atom) atoms are called perfluorinated fluoropolymers. [Pg.624]

Koo GP, Riddell MN, O Toole JL. Fatigue properties of polytetrafluoroethylene and related fluoropolymers. Polym Eng Sci... [Pg.314]

Fluoropolymer polymer processing additives are required by pipe extmsion processes. They cause pressure reduction in extmder, decrease in torque and eneigy consumption, decrease in processing temperature, and increase of out-put. Pipes manufactured with processing additives have smooth wall finish (better esthetics and performance). [Pg.222]

Figm 10 SPR sensor response kinetics measured upon the probing of the diffusion of benzene through a fluoropolymer polymer film. Experimental data are shown as circles and the fitted cunre as a line. Reprinted with permission from Podgorsek, R. P. Franke, H. Appl. Phys. Lett. 1998, 73,2887-2889. Copyright 1998 American Institute of Physics. [Pg.654]

Because of its excekent combination of properties, processibkity, and relatively low price compared to other fluoropolymers, PVDF has become the largest volume fluoropolymer after PTFE consumption in the United States has grown from zero in 1960 to about 6200 metric tons in 1991 (186). About 49% of the consumed volume is PVDF modified by copolymerization with 5—12-wt % HFP to enhance flexibkity. In 1992, Hst price for homopolymer powders was 15.32/kg, and for pekets 15.42/kg the reported market price was 14.09—14.22/kg (187). In the United States, almost ak PVDF is suppHed by Ausimont USA, Inc., Elf Atochem North America, Inc., and Solvay Polymers, Inc. Ausimont and Elf Atochem are producers Solvay is an importer of the resin. Smak amounts of resin are imported from Germany by Huls America, Inc, and from Japan by Kureha Chemical Industry Co., Ltd. PVDE producers and their trademarks are Hsted in Table 4. [Pg.388]

Among the preformed polymers cured by minor additions of aHyl ester monomers and catalysts followed by heat or irradiation are PVC cured by diallyl fumarate (82), PVC cured by diallyl sebacate (83), fluoropolymers cured by triaHyl trimeUitate (84), and ABS copolymers cured by triaUyl trimeUitate (85). [Pg.87]

Core technical competencies may be composed of a number of core or key technologies. The competencies in turn can support product families, platforms, or core products, which then support individual products. These products may ultimately be found in a number of forms or shapes. For example, a key technology such as polymer characterization may support a competency in polymer synthesis and architecture, which in turn supports the platform of fluoropolymers and the product family of Teflon (DuPont) fluoropolymer resins that can be found as films, fibers, or in other forms. [Pg.128]

A 50 50 mol/mol copolymer of hexafluoroisobutylene (CH2 = C(CF3)2) and vinylidene fluoride was made available by Allied Chemical in the mid-1970s as CM-1 Fluoropolymer. The polymer has the same crystalline melting point as PTFE (327°C) but a mueh lower density (1.88g/cm ). It has excellent chemical resistance, electrical insulation properties and non-stiek characteristics and, unlike PTFE, may be injeetion moulded (at 380°C). It is less tough than PTFE. [Pg.379]

In addition to the fluoroplastics and fluororubbers already described other fluoropolymers have been marketed. Polymers of hexafluoropropylene oxide are marketed by Du Pont (Krytox). These materials have a low molecular weight (2000-7000) and are either oils or greases. The oils are uses as lubricants, heat transfer fluids and non-flammable oils for diffusion pumps. The greases are also used as lubricants. They have good heat and oil resistance but it is said that explosions may result from contact with the surfaces aluminium or magnesium cuttings. [Pg.384]

WALL, L.A. (Ed.), Fluoropolymers (High Polymer Series Vol. 25), Wiley-Interscience, New York (1972)... [Pg.385]

Over the years polymers have been produced suitable for use at progressively higher temperatures. Where this is a requirement, it is usual first to decide whether a rubbery or a rigid material is required. If the former, this has been dealt with by the author elsewhere." If the latter, it is usually convenient to look in turn at polycarbonates, PPO-based materials, polyphenylene sulphides, polysul-phones, polyketones such as PEEK and PEK, polyamide-imides, poly-phthalamides, fluoropolymers, liquid crystal polymers and polyimides. [Pg.897]

While polymeric surfaces with relatively high surface energies (e.g. polyimides, ABS, polycarbonate, polyamides) can be adhered to readily without surface treatment, low surface energy polymers such as olefins, silicones, and fluoropolymers require surface treatments to increase the surface energy. Various oxidation techniques (such as flame, corona, plasma treatment, or chromic acid etching) allow strong bonds to be obtained to such polymers. [Pg.460]

The types of polymers that are used as release coatings include silicone networks, silicone containing copolymers, polymers with long alkyl or fluoroalkyl side chains, fluoropolymers, and polyolefins. These polymers have surface energies that are less than the surface energies of commonly used PSAs, an important feature of release materials. [Pg.536]

Polymerization, including radical polymerization, in supercritical C02 has been reviewed.1 6 137 It should be noted supercritical C()2 while a good solvent for many monomers is a very poor solvent for polymers such as the (meth)acrylates and S. As a consequence, with the exception of certain fluoropolymers and polymerizations taken to very low conversion, most polymerizations in supercritical CCb are of necessity precipitation, dispersion or emulsion polymerizations. [Pg.432]

Temperature dependence (related to the temperature dependence of the conformational structure and the morphology of polymers) of the radiation effect on various fluoropolymers e.g., poly (tetrafluoroethylene-co-hexafluoropropylene), poly(tetrafluoroethylene-co-perfluoroalkylvinylether), and poly(tetrafluoroethylene-co-ethylene) copolymers has been reported by Tabata [419]. Hill et al. [420] have investigated the effect of environment and temperature on the radiolysis of FEP. While the irradiation is carried out at temperatures above the glass transition temperature of FEP, cross-linking reactions predominate over chain scission or degradation. Forsythe et al. [421]... [Pg.894]

The reactors are cylindrical in shape and can carry up to 30 mg of resin. Polymer sieves at the top and bottom of the cylinders serve for liquid feed and withdrawal. The array of reactors is attached to a capillary system allowing feed to either columns or rows. This distribution system is said to provide uniform charges to the various reactors. A specific detail of the reaction system is that mixing is achieved by pneumatic actuation using a fluoropolymer membrane (Figure 4.36). [Pg.417]

Selection of Corrosion-Resistant Materials The concentrated sofutions of acids, alkalies, or salts, salt melts, and the like used as electrolytes in reactors as a rule are highly corrosive, particularly so at elevated temperatures. Hence, the design materials, both metallic and nonmetallic, should have a sufficiently high corrosion and chemical resistance. Low-alloy steels are a universal structural material for reactors with alkaline solutions, whereas for reactors with acidic solutions, high-alloy steels and other expensive materials must be used. Polymers, including highly stable fluoropolymers such as PTFE, become more and more common as structural materials for reactors. Corrosion problems are of particular importance, of course, when materials for nonconsumable electrodes (and especially anodes) are selected, which must be sufficiently stable and at the same time catalytically active. [Pg.329]

Membranes UF membranes consist primarily of polymeric structures (polyethersulfone, regenerated cellulose, polysulfone, polyamide, polyacrylonitrile, or various fluoropolymers) formed by immersion casting on a web or as a composite on a MF membrane. Hydrophobic polymers are surface-modified to render them hydrophilic and thereby reduce fouling, reduce product losses, and increase flux [Cabasso in Vltrafiltration Membranes and Applications, Cooper (ed.). Plenum Press, New York, 1980]. Some inorganic UF membranes (alumina, glass, zirconia) are available but only find use in corrosive applications due to their high cost. [Pg.51]

Table 8.47 shows the available options for the analysis of polymer processing aids, namely combustion and instrumental methods. The best method is dependent on PPA type, the level to be measured, and the available equipment (see also Section 8.2.1.2). Fluoropolymer processing aid concentrations can be determined by WDXRF configured to measure either fluorine or a tracer, and by EDXRF to analyse a tracer [29]. Calibration curves are required. At present, EDXRF or benchtop XRF units cannot directly measure fluorine. For resin or masterbatch producers who prefer to make on-line XRF measurements of processing aid concentrations (to letdown levels of 50-100 ppm), processing aids that contain a tracer (usually BaS04) are available. The analysis time is less than two minutes. [Pg.636]

Vinyl ethers constitute a third class of monomers which have been cationically polymerized in C02. While fluorinated vinyl ether monomers such as those described in Sect. 2.1.2 can be polymerized homogeneously in C02 because of the high solubility of the resulting amorphous fluoropolymers, the polymerization of hydrocarbon vinyl ethers in C02 results in the formation of C02-insoluble polymers which precipitate from the reaction medium. The work in this area reported to date in the literature includes precipitation polymerizations and does not yet include the use of stabilizing moieties such as those described in the earlier sections on dispersion and emulsion polymerizations (Sect. 3). [Pg.131]


See other pages where Polymers fluoropolymers is mentioned: [Pg.132]    [Pg.547]    [Pg.63]    [Pg.132]    [Pg.547]    [Pg.63]    [Pg.360]    [Pg.279]    [Pg.385]    [Pg.223]    [Pg.311]    [Pg.482]    [Pg.319]    [Pg.262]    [Pg.429]    [Pg.506]    [Pg.549]    [Pg.554]    [Pg.407]    [Pg.84]    [Pg.84]    [Pg.779]    [Pg.783]    [Pg.462]    [Pg.240]    [Pg.108]    [Pg.111]    [Pg.108]   


SEARCH



Fluoropolymer

Fluoropolymers

Fluoropolymers polymer catalysts

Polymer processing fluoropolymers

Polymer reaction fluoropolymer

© 2024 chempedia.info