Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Vinyl ethers, fluorinated

A number of inhalation anesthetics have been introduced to clinical practice, some of which are Hsted in Table 1. AH agents introduced after 1950, except ethyl vinyl ether, contain fluorine. Agents such as ether, chloroform, trichloroethylene (Tdlene), cyclopropane, and fluoroxene (Fluoromar), which were once used, have been displaced by the newer fluorinated anesthetics. [Pg.408]

In the 1960s and 1970s, additional elastomers were developed by Du Pont under the Viton and Kalrez trademarks for improved low temperature and chemical resistance properties using perfluoro(methyl vinyl ether), CF2=CFOCF3, as a comonomer with vinyUdene fluoride and/or tetrafluoroethylene (12,13) (see Fluorine compounds, organic-tethafluoroethylene polypous and copolyp rs). [Pg.508]

Fig. 3. The percent volume swell in benzene after seven days at 21°C compared with the wt % of fluorine on standard recommended compounds. A, copolymers of vinyUdene fluoride—hexafluoropropylene B, terpolymers of vinyUdene fluoride—hexafluoropropylene—tetrafluoroethylene C, terpolymers of vinyhdene fluoride—hexafluoropropylene—tetrafluoroethylene-cure site monomer D, copolymer of tetrafluoroethylene—perfluoro(methyl vinyl ether)-cure... Fig. 3. The percent volume swell in benzene after seven days at 21°C compared with the wt % of fluorine on standard recommended compounds. A, copolymers of vinyUdene fluoride—hexafluoropropylene B, terpolymers of vinyUdene fluoride—hexafluoropropylene—tetrafluoroethylene C, terpolymers of vinyhdene fluoride—hexafluoropropylene—tetrafluoroethylene-cure site monomer D, copolymer of tetrafluoroethylene—perfluoro(methyl vinyl ether)-cure...
The inability to process PTFE by conventional thermoplastics techniques has nevertheless led to an extensive search for a melt-processable polymer but with similar chemical, electrical, non-stick and low-friction properties. This has resulted in several useful materials being marketed, including tetrafluoro-ethylene-hexafluoropropylene copolymer, poly(vinylidene fluoride) (Figure 13.1(d)), and, most promisingly, the copolymer of tetrafluoroethylene and perfluoropropyl vinyl ether. Other fluorine-containing plastics include poly(vinyl fluoride) and polymers and copolymers based on CTFE. [Pg.363]

In attempts to further improve the stability of fluorine-containing elastomers Du Pont developed a polymer with no C—H groups. This material is a terpolymer of tetrafluoroethylene, perfluoro(methyl vinyl ether) and, in small amounts, a cure site monomer of undisclosed composition. Marketed as Kalrez in 1975 the polymer withstands air oxidation up to 290-315°C and has an extremely low volume swell in a wide range of solvents, properties unmatched by any other commercial fluoroelastomer. This rubber is, however, very expensive, about 20 times the cost of the FKM rubbers and quoted at 1500/kg in 1990, and production is only of the order of 1 t.p.a. In 1992 Du Pont offered a material costing about 75% as much as Kalrez and marketed as Zalak. Structurally, it differs mainly from Kalrez in the choice of cure-site monomer. [Pg.382]

Acyl hypofluorites react readily with ends, enol acetates, vinyl ethers, and enolates [39, 40, 41] (Table 2, entries 1-7) Steroidal enol acetates are also fluorinated smoothly [39] (equations 17-19)... [Pg.143]

The methyl ether obtained from detoxifying perfluoroisobutene is dehydro fluorinated with alkali Fiydrolysis ol the resulting vinyl ether yields hexafluo-roisobutanoic acid [17] (equation 18)... [Pg.427]

Because of thetr electron deficient nature, fluoroolefms are often nucleophihcally attacked by alcohols and alkoxides Ethers are commonly produced by these addition and addition-elimination reactions The wide availability of alcohols and fliioroolefins has established the generality of the nucleophilic addition reactions The mechanism of the addition reaction is generally believed to proceed by attack at a vinylic carbon to produce an intermediate fluorocarbanion as the rate-determining slow step The intermediate carbanion may react with a proton source to yield the saturated addition product Alternatively, the intermediate carbanion may, by elimination of P-halogen, lead to an unsaturated ether, often an enol or vinylic ether These addition and addition-elimination reactions have been previously reviewed [1, 2] The intermediate carbanions resulting from nucleophilic attack on fluoroolefins have also been trapped in situ with carbon dioxide, carbonates, and esters of fluorinated acids [3, 4, 5] (equations 1 and 2)... [Pg.729]

Miller et al. [9] hypothesized rules on the regioselectivity of addition from the study of the base-catalyzed addition of alcohols to chlorotnfluoroethylene. Attack occurs at the vinylic carbon with most fluorines. Thus, isomers of dichloro-hexafl uorobutene react with methanol and phenol to give the corresponding saturated and vinylic ethers The nucleophiles exclusively attack position 3 of 1,1-dichloro-l,2,3,4,4,4-hexafluoro-2-butene and position I of 4,4-dichloro-l,l,2,3,3,4-hexafluoro-1-butene [10]. In I, l-dichloro-2,3,3,4,4,4-hexafluoro-l-butene, attack on position 2 is favored [J/] (equation 5) Terminal fluoroolefms are almost invariably attacked at tbe difluoromethylene group, as illustrated by the reaction of sodium methoxide with perfluoro-1-heptene in methanol [/2J (equation 6). [Pg.730]

Few monofluoro vinyl ethers have been reported in the literature. The NMR data for one example is given. It can be seen that the P-ether substituent shields the fluorine much more than does a P-chlorine substituent. [Pg.79]

Scheme 4. Homogeneous polymerization of fluorinated vinyl ethers in supercritical C02 [78]... Scheme 4. Homogeneous polymerization of fluorinated vinyl ethers in supercritical C02 [78]...
Vinyl ethers constitute a third class of monomers which have been cationically polymerized in C02. While fluorinated vinyl ether monomers such as those described in Sect. 2.1.2 can be polymerized homogeneously in C02 because of the high solubility of the resulting amorphous fluoropolymers, the polymerization of hydrocarbon vinyl ethers in C02 results in the formation of C02-insoluble polymers which precipitate from the reaction medium. The work in this area reported to date in the literature includes precipitation polymerizations and does not yet include the use of stabilizing moieties such as those described in the earlier sections on dispersion and emulsion polymerizations (Sect. 3). [Pg.131]

The oligomers and polymers described above retain a number of protons that may be undesirable for some demanding applications. The obvious solution is to replace hydrogen with fluorine, and it appears that the only prospect for such transformation is radical fluorination. By the fluorination approach, these F-vinyl ether homopolymers, owing to their unique structures, may provide a new route to novel perfluoropolyethers. [Pg.56]

The hydroxylated vinyl ether monomers can be further fuctionalized on the hydroxy group. For example, the conversion of 5 to its various derivatives 16-20 is straightforwad, and thus provides the entry to new difunctional fluorinated monomers.23... [Pg.61]

Fluorinated polymers, especially polytetrafluoroethylene (PTFE) and copolymers of tetrafluoroethylene (TFE) with hexafluoropropylene (HFP) and perfluorinated alkyl vinyl ethers (PFAVE) as well as other fluorine-containing polymers are well known as materials with unique inertness. However, fluorinated polymers with functional groups are of much more interest because they combine the merits of pefluorinated materials and functional polymers (the terms functional monomer/ polymer will be used in this chapter to mean monomer/polymer containing functional groups, respectively). Such materials can be used, e.g., as ion exchange membranes for chlorine-alkali and fuel cells, gas separation membranes, solid polymeric superacid catalysts and polymeric reagents for various organic reactions, and chemical sensors. Of course, fully fluorinated materials are exceptionally inert, but at the same time are the most complicated to produce. [Pg.91]

An alternative approach to the use of partially fluorinated systems to reduce the cost of fluorinated PEMs has been developed by DeSimone et al. a perfluo-rinated vinyl ether is copolymerized with a hydrocarbon monomer (styrene), sulfonated, and then subsequently fluorinated to replace existing C-H bonds with C-E bonds (Eigure 3.18). Thus yields the perfluorinated, cross-linked sul-fonyl fluoride membrane that can then be hydrolyzed to give the PEM (7). Because the membranes are cross-linked, considerably higher acid contents (up to 1.82 meq/g) are possible for these materials in comparison to Nafion, leading also to higher proton conductivity values. [Pg.140]

Many other crosslinking reactions are used in commercial applications. A variety of halogen-containing elastomers are crosslinked by heating with a basic oxide (e.g., MgO or ZnO) and a primary diamine [Labana, 1986 Schmiegel, 1979]. This includes poly(epichlorohydrin) (Sec. 7-2b-6) various co- and terpolymers of fluorinated monomers such as vinylidene fluoride, hexafluoropropene, perfluoro(methyl vinyl ether), and tetrafluoroethylene (Sec. 6-8e) and terpolymers of alkyl acrylate, acrylonitrile, and 2-chloroethyl vinyl ether (Sec. 6-8e). [Pg.744]

TFE copolymerization [FLUORINE COMPOUNDS, ORGANIC - TET RAFLU OROETHYLENE-PERFLU ORO VINYL ETHER COPOLYMERS] (Vol 11) Perfluorosebacic acid [307-78-8]... [Pg.737]

Additions of elemental halogens to unsaturated compounds are among the most common preparations of halogenated fluoroorganics. The transformations are usually fairly clean and proceed in good yields. Besides the numerous examples of halogen addition tofluoroalkenes and fluoroalkyl-substituted alkenes, additions to perfluoropropyl vinyl ether [2] and fluorinated styrenes [5, 4] have been reported. Both ionic and free-radical processes occur (equations 1 and 2)... [Pg.364]

A laser beam was used for graft polymerization of AAc onto a tetrafluo-roethylene-perfluoroalkyl vinyl ether copolymer film [81]. The film placed in contact with AAc solution was irradiated with KrF laser through the film to excite the film/solution interface. Surface composition of the grafted film determined by XPS revealed an extensive loss of fluorine atom and an increase of oxygen atom in addition to the presence of a Cls line shape, similar to that of AAc monomer. Mirzadeh et al. [82] used pulsed laser beam for the graft polymerization of AAm on a rubber surface in the presence of a photosensitizer, ben-zophenone, or AIBN. [Pg.14]


See other pages where Vinyl ethers, fluorinated is mentioned: [Pg.374]    [Pg.408]    [Pg.1101]    [Pg.34]    [Pg.114]    [Pg.52]    [Pg.61]    [Pg.195]    [Pg.197]    [Pg.197]    [Pg.52]    [Pg.61]    [Pg.195]    [Pg.197]    [Pg.197]    [Pg.649]    [Pg.280]    [Pg.48]    [Pg.70]    [Pg.562]    [Pg.202]    [Pg.213]    [Pg.1101]    [Pg.1133]   
See also in sourсe #XX -- [ Pg.77 ]




SEARCH



Ethers fluorinated

Fluorinated ethylene vinyl ether

Vinyl fluorination

Vinylic fluorine

© 2024 chempedia.info