Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

High salt concentrations

For a more complete understanding of colloid stability, we need to address the kinetics of aggregation. The theory discussed here was developed to describe coagulation of charged colloids, but it does apply to other cases as well. First, we consider the case of so-called rapid coagulation, which means that two particles will aggregate as soon as they meet (at high salt concentration, for instance). This was considered by von Smoluchowski 1561 here we follow [39, 57]. [Pg.2683]

Hydrophobic Interaction Chromatography. Hydrophobic interactions of solutes with a stationary phase result in thek adsorption on neutral or mildly hydrophobic stationary phases. The solutes are adsorbed at a high salt concentration, and then desorbed in order of increasing surface hydrophobicity, in a decreasing kosmotrope gradient. This characteristic follows the order of the lyotropic series for the anions ... [Pg.55]

Tannins occur in many plants and are separated by extraction. At present, only quebracho extract is used as a mud thinner in significant quantity in the United States. Quebracho is an acidic material and performs best at high pH. It is an excellent thinner for lime-treated and cement-contaminated muds. However, it is not effective at high salt concentrations. Sulfomethylated tannin products are functional over a wide range of pH and salinity and have either been treated with chromium for good thermal stabiUty (58) or are chrome free. Concentrations of tannin additives are ca 1.5—18 kg/m (0.5—6 lb/bbl). [Pg.180]

Physical methods such as osmotic shock, in which the cells are exposed to high salt concentrations to generate an osmotic pressure difference across the membrane, can lead to cell-wall disruption. Similar disruption can be obtained by subjecting the cells to freeze/thaw cycles, or by pressuriziug the cells with an inert gas (e.g., nitrogen) followed by a rapid depressurization. These methods are not typically used for large-scale operations. [Pg.2059]

While these model predictions have been confirmed experimentally [11] in a number of cases, significant deviations have been observed [73] in both limits of very low and high salt concentrations in systems of wormlike micelles. [Pg.545]

Cationic samples can be adsorbed on the resin by electrostatic interaction. If the polymer is strongly cationic, a fairly high salt concentration is required to prevent ionic interactions. Figure 4.18 demonstrates the effect of increasing sodium nitrate concentration on peak shapes for a cationic polymer, DEAE-dextran. A mobile phase of 0.5 M acetic acid with 0.3 M Na2S04 can also be used. [Pg.112]

If the protein of interest is a heteromultimer (composed of more than one type of polypeptide chain), then the protein must be dissociated and its component polypeptide subunits must be separated from one another and sequenced individually. Subunit associations in multimeric proteins are typically maintained solely by noncovalent forces, and therefore most multimeric proteins can usually be dissociated by exposure to pEI extremes, 8 M urea, 6 M guanidinium hydrochloride, or high salt concentrations. (All of these treatments disrupt polar interactions such as hydrogen bonds both within the protein molecule and between the protein and the aqueous solvent.) Once dissociated, the individual polypeptides can be isolated from one another on the basis of differences in size and/or charge. Occasionally, heteromultimers are linked together by interchain S—S bridges. In such instances, these cross-links must be cleaved prior to dissociation and isolation of the individual chains. The methods described under step 2 are applicable for this purpose. [Pg.131]

Recently Blake et al.153) made such studies in the case of human (HL) and tortoise egg-white (TEWL) lysozyme based on crystallographic refinements at 1,5 and 1,6 A resolution, respectively. By these investigations they attempted to obtain information on the perturbations of water structure in the hydration shell by neighboured protein molecules and by high salt concentrations as well as on the degree of order of the bound water. The authors came to the conclusion that the number of ordered water molecules are 128 in TEWL and 140 in HL, whereas the overall content is made up of 650 and 350 water molecules per lysozyme molecule. [Pg.28]

Micro-organisms with resistance to environmental stresses such as solvents, extremes of pH, high salt concentration, and having broad temperature and dissolved oxygen optima are more suited to process applications. Improved process instrumentation and... [Pg.28]

Soil structure. High salt concentrations, and high sodium adsorption ratios in particular, adversely affect the physical properties of the soil (Davidson Quirk, 1961), altering such parameters as particle size and hydraulic conductance. [Pg.220]

A modification of this method was described by Aurora et al. (1985). The LUV vesicles (300-600 nm) were prepared by dispersing dioleoylphosphatidic acid (DOPA) and cholesterol at a high salt concentration. The preparation formed contained only about 3% SUV vesicles. [Pg.266]

Poly(dG-dC) poly(dG-dC) and its methylated analogue structures assume left-handed conformation (Z-DNA) in high molar sodium salt (Na", K" ), in low molar divalent cations (Ca", Mg", Ni ), micromolar concentrations of hexaamine cobalt chloride (Co(NH3)6)Cl3 and in millimolar concentrations of polyamines. In order to analyse the binding of berberine to Z-form DNA, Kumar et al. [186] reported that the Z-DNA structure of poly(dG-dC) poly(dG-dC) prepared in either a high salt concentration (4.0 M) or in 40 mM (Co(NH3)6)Cl3 remained invariant in the presence of berberine up to a nucleotide phosphate/alkaloid molar ratio of 0.8 and suggested that berberine neither bormd to Z-form DNA nor converted the Z-DNA to the... [Pg.186]

A tetrapolymer consisting of 40 to 80 mole-percent of AMPS, 10 to 30 mole-percent of vinylpyrroMone, 0 to 30 mole-percent of acrylamide, and 0 to 15 mole-percent of acrylonitrile was also a suggested as a fluid loss additive [1061]. Even at high salt concentrations, these polymers yield high-temperature-stable protective colloids that provide for minimal fluid loss under pressure. [Pg.50]

Study the case of tank washout, with the tank initially full, at high salt concentration and the liquid input streams free of salt, Ci = C2 = 0. Show that the tank concentration, C3, decreases exponentially with respect to time. [Pg.495]

Exudate collection in trap solutions usually requires subsequent concentration steps (vacuum evaporation, lyophilization) due to the low concentration of exudate compounds. Depending on the composition of the trap solution, the reduction of sample volume can lead to high salt concentrations, which may interfere with subsequent analysis or may even cause irreversible precipitation of certain exudate compounds (e.g., Ca-citrate, Ca-oxalate, proteins). Therefore, if possible, removal of interfering salts by use of ion exchange resins prior to sample concentration is recommended. Alternatively, solid-phase extraction techniques may be employed for enrichment of exudate compounds from the diluted trap solution (11,22). High-molecular-weight compounds may be concentrated by precipitation with organic solvents [methanol, ethanol, acetone 80% (v/v) for polysaccharides and proteins] or acidification [trichloroacetic acid 10% (w/v), per-... [Pg.44]

Retention in HIC can be described in terms of the solvophobic theory, in which the change in free energy on protein binding to the stationary phase with the salt concentration in the mobile phase is determined mainly by the contact surface area between the protein and stationary phase and the nature of the salt as measured by its propensity to increase the surface tension of aqueous solutions [331,333-338]. In simple terms the solvopbobic theory predicts that the log u ithn of the capacity factor should be linearly dependent on the surface tension of the mobile phase, which in turn, is a llne2u function of the salt concentration. At sufficiently high salt concentration the electrostatic contribution to retention can be considered constant, and in the absence of specific salt-protein interactions, log k should depend linearly on salt concentration as described by equation (4.21)... [Pg.207]

Hydrophobic interaction chromatograph (HIC), while very attractive in principle, has proved difficult to scale up for processing. A recent series of articles explores some of the unique problems associated with process-scale HIC. Load sample preparation20 must be carefully examined to prevent protein aggregate formation in the presence of the relatively high salt concentrations used in this technique. Successful scale-up also requires the setting of wide specifications to accomodate routine variations in the feed.21 The effect of the salt concentration on capacity may be somewhat more... [Pg.104]


See other pages where High salt concentrations is mentioned: [Pg.144]    [Pg.33]    [Pg.54]    [Pg.181]    [Pg.155]    [Pg.479]    [Pg.99]    [Pg.444]    [Pg.157]    [Pg.361]    [Pg.336]    [Pg.1317]    [Pg.28]    [Pg.449]    [Pg.502]    [Pg.507]    [Pg.509]    [Pg.309]    [Pg.432]    [Pg.306]    [Pg.23]    [Pg.405]    [Pg.508]    [Pg.338]    [Pg.775]    [Pg.143]    [Pg.445]    [Pg.192]    [Pg.719]    [Pg.890]    [Pg.106]    [Pg.605]    [Pg.107]   
See also in sourсe #XX -- [ Pg.82 , Pg.85 ]




SEARCH



Activity coefficients high salt concentration

Electrophoresis at High Salt Concentration

High Concentration

Salt concentration

© 2024 chempedia.info