Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Applications flow injection

The solvent evaporates and the sample is then re-dissolved in another solvent as the belt moves into a new section of the manifold. This technique is particularly suitable where there is a need to change the solvent matrix to ensure compatibility with the measurement stage, as in liquid chromatography. The application of solvent extraction in flow-injection applications has been described by Karlberg and Thelander [3]. [Pg.104]

Flow injection applications tend to fall into three categories low dispersion, medium dispersion, and large dispersion. [Pg.935]

Source Adapted from Valcarcel, M. tuque de Castro, M. D. Flow-Injection Analysis Principles and Applications. Ellis Norwood Chichester, England, 1987. [Pg.656]

Flow injection analysis has also found numerous applications in the analysis of clinical samples, using both enzymatic and nonenzymatic methods. A list of selected examples is given in Table 13.3. [Pg.656]

The following experiments may he used to illustrate the application of kinetic methods of analysis. Experiments are divided into two groups those based on chemical kinetics and those using flow injection analysis. Each suggested experiment includes a brief description. [Pg.659]

The following set of experiments provide examples of the application of flow injection analysis or the characterization of the behavior of a flow injection analysis system. [Pg.660]

The following resources provide additional information on the theory and application of flow injection analysis. [Pg.665]

The ion pair extraction by flow injection analysis (FIA) has been used to analyze sodium dodecyl sulfate and sodium dodecyl ether (3 EO) sulfate among other anionic surfactants. The solvating agent was methanol and the phase-separating system was designed with a PTFE porous membrane permeable to chloroform but impermeable to the aqueous solution. The method is applicable to concentrations up to 1.25 mM with a detection limit of 15 pM [304]. [Pg.285]

The 1/16" x 0.02" i.d. transfer line also functioned as a sample dilution device in other applications, a stainless steel column packed with glass beads has been found to be useful for dilution. This simple dynamic dilution technique has been used extensively in flow injection analysis.3 A refractive index detector is typically used to measure the sample transfer time. As shown in Figure 4, approximately 5 minutes is required to transfer the sample plug to the Rheodyne valve. As the apex of the sample band passes though the Rheodyne valve, the valve is activated and 1 pi injected onto the liquid chromatographic column. The sample transfer time was checked periodically over 1 year of operation and found to be stable. [Pg.80]

A new cholesterol flow injection analysis biosensor has also been described as an application of the H2O2 ECL sensor56. In that work, the luminol electrochemiluminescence, previously studied in aqueous media, was implemented in Veronal buffer added of 0.3% triton X-100 (v/v), 0.3% PEG and 0.4% cholate to enable the solubilisation of the cholesterol and then its efficient oxidation catalyzed by the immobilized cholesterol oxidase. The ECL reaction occurred thus in a micellar medium and the performances of the H2O2 ECL sensor were investigated. [Pg.171]

D.A. Palmer, M.T. French, and J.N. Miller, Lise of protein A as an immunological reagent and its application using flow injection a review. Analyst 119, 2769-2776 (1994). [Pg.278]

Atienza et al. [657] reviewed the applications of flow injection analysis coupled to spectrophotometry in the analysis of seawater. The method is based on the differing reaction rates of the metal complexes with 1,2-diaminocycl-ohexane-N, N, N, A/Metra-acetate at 25 °C. A slight excess of EDTA is added to the sample solution, the pH is adjusted to ensure complete formation of the complexes, and a large excess of 0.3 mM to 6 mM-Pb2+ in 0.5 M sodium acetate is then added. The rate of appearance of the Pbn-EDTA complex is followed spectrophotometrically, 3 to 6 stopped-flow reactions being run in succession. Because each of the alkaline-earth-metal complexes reacts at a different rate, variations of the time-scan indicates which ions are present. [Pg.236]

Worsfold et al. [960] have discussed the application of flow injection analysis with chemiluminescence detection for the shipboard monitoring of trace metals. [Pg.305]

The flow-cell design was introduced by Stieg and Nieman [166] in 1978 for analytical uses of CL. Burguera and Townshend [167] used the CL emission produced by the oxidation of alkylamines by benzoyl peroxide to determine aliphatic secondary and tertiary amines in chloroform or acetone. They tested various coiled flow cells for monitoring the CL emission produced by the cobalt-catalyzed oxidation of luminol by hydrogen peroxide and the fluorescein-sensitized oxidation of sulfide by sodium hypochlorite [168], Rule and Seitz [169] reported one of the first applications of flow injection analysis (FTA) in the CL detection of peroxide with luminol in the presence of a copper ion catalyst. They... [Pg.28]

As can be seen in Table 3, a wide range of analytes derivatized with different labels have been detected using the POCL reaction. Most of these applications have employed flow injection or liquid chromatographic techniques. An area of growing interest is the combination of capillary electrophoresis with chemiluminescence. Several strategies have been used to detect analytes with fluorescent... [Pg.160]

Flow injection methodologies are highly suitable for implementing CL analyses using low-pressure continuous mixing. There are many reported applications of this type including immobilized reactants [13] or enzymes [14], One recent example is the flow injection manifold used for the determination of poly-... [Pg.180]

M Valcarcel, MD Luque de Castro. Flow-Injection Analysis, Principles and Applications. 1st ed. Chichester Ellis Horwood, 1987, pp. 40-98. [Pg.345]

On the other hand, several oxidases are known to generate hydrogen peroxide, acting as an oxidant in the CL system, from corresponding substrates. IMERs in which the oxidases are immobilized on adequate supporting materials such as glass beads have been developed. IMERs are often used for flow injection with CL detection of uric acid and glucose, and are also applicable to the CL determination of acetylcholine, choline, polyamines, enzyme substrates, etc., after online HPLC separation. [Pg.403]

Optimization and applications of CL detection in flow injection and liquid chromatographic analysis and the relatively new use of CL in capillary electrophoresis are extensively described. Particular interest is attached to the universally applied peroxyoxalate CL reactions, as well as to the applications of new acridan esters in immunoassay. Obviously, the related applications of BL and CL imaging techniques in analytical chemistry, and the increasing importance of these techniques in DNA analysis—including the recent strategies in the development of CL sensors—are also presented. [Pg.632]

Flow injection analysis is a fast-developing technique with many potentialities. Particular attractions are the relative simplicity of operation and automation, together with sample throughputs which may exceed 100 per hour. Thus routine monitoring of process streams and pollution control are obvious areas for application. [Pg.519]

Turbulent flow chromatography uses large particle packing materials and high flow rates to separate small molecules from proteins and other matrix components in plasma. In one example, Herman et al.109 reported that turbulent flow chromatography was useful for a series of discovery compounds as the online extraction step in LC/MS/MS analysis. As an alternative, Hsieh et al.89-104 107 described the use of a single mixed function column as a simpler process for direct plasma injection applications. [Pg.212]

FIA has also found wide application in pharmaceutical analysis.214,215 Direct UV detection of active ingredients is the most popular pharmaceutical analysis application of FIA. For single component analysis of samples with little matrix interference such as dissolution and content uniformity of conventional dosage forms, many pharmaceutical chemists simply replace a column with suitable tubing between the injector and the detector to run FIA on standard HPLC instrumentation. When direct UV detection offers inadequate selectivity, simple online reaction schemes with more specific reagents including chemical, photochemical, and enzymatic reactions of derivatization are applied for flow injection determination of pharmaceuticals.216... [Pg.269]

Tecator Ltd., Sweden. (1984) Application Note No. ASN 73-31/84. Determination of Extractable Phosphorus in Soil by Flow Injection Analysis. [Pg.376]


See other pages where Applications flow injection is mentioned: [Pg.1279]    [Pg.1279]    [Pg.338]    [Pg.265]    [Pg.127]    [Pg.603]    [Pg.670]    [Pg.360]    [Pg.369]    [Pg.73]    [Pg.274]    [Pg.118]    [Pg.428]    [Pg.568]    [Pg.630]    [Pg.105]    [Pg.94]    [Pg.266]    [Pg.269]    [Pg.99]    [Pg.678]    [Pg.60]    [Pg.115]    [Pg.148]   
See also in sourсe #XX -- [ Pg.20 , Pg.53 , Pg.147 ]




SEARCH



Applications Injection)

Flow applications

© 2024 chempedia.info