Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fischer zeolites

Fischer and Holderich (1999) have shown that Bayer-Villiger reaction of cyclopentanone with aqueous 30 % H2O2, to give delta-valerolactone, is amenable to catalysis with cationic ion-exchange resin (CIER), Amberlyst-I5 without cataly.sts the conversion and the yield of the product are poor. Nafion on silica also works but was found to be poor compared to Amberlyst-15. Beta zeolite also works but was found to be inferior to Amberlyst-I5. [Pg.129]

The induction of steric effects by the pore walls was first demonstrated with heterogeneous catalysts, prepared from metal carbonyl clusters such as Rh6(CO)16, Ru3(CO)12, or Ir4(CO)12, which were synthesized in situ after a cation exchange process under CO in the large pores of zeolites such as HY, NaY, or 13X.25,26 The zeolite-entrapped carbonyl clusters are stable towards oxidation-reduction cycles this is in sharp contrast to the behavior of the same clusters supported on non-porous inorganic oxides. At high temperatures these metal carbonyl clusters aggregate to small metal particles, whose size is restricted by the dimensions of the zeolitic framework. Moreover, for a number of reactions, the size of the pores controls the size of the products formed thus a higher selectivity to the lower hydrocarbons has been reported for the Fischer Tropsch reaction. [Pg.448]

In further work, the same research group showed that it was possible to effect transacetalation of the initial butyl glucosides 2, 3 with octanol and dodecanol over H-beta zeolites. Direct Fischer glucosylation, leading to the desired long-chain glucosides 4, 5, was also possible (Scheme l).37... [Pg.35]

SCHEME 1. Acid-zeolite catalyzed formation of alkyl glucosides by Fischer glucosylation and by transacetalation of butyl glucosides. [Pg.36]

Scheme 2. Fischer glycosylation of GalNAc catalyzed by acid zeolites. Scheme 2. Fischer glycosylation of GalNAc catalyzed by acid zeolites.
A. Corma, S. Iborra, S. Miquel, and J. Primo, Preparation of long-chain alkyl glucoside surfactants by one-step direct Fischer glucosidation, and by transace-talation of butyl glucosides, on beta zeolite catalysts, /. Catal., 180 (1998) 218-224. [Pg.87]

With the recent development of zeolite catalysts that can efficiently transform methanol into synfuels, homogeneous catalysis of reaction (2) has suddenly grown in importance. Unfortunately, aside from the reports of Bradley (6), Bathke and Feder (]), and the work of Pruett (8) at Union Carbide (largely unpublished), very little is known about the homogeneous catalytic hydrogenation of CO to methanol. Two possible mechanisms for methanol formation are suggested by literature discussions of Fischer-Tropsch catalysis (9-10). These are shown in Schemes 1 and 2. [Pg.136]

Fischer-Tropsch synthesis could be "tailored by the use of iron, cobalt and ruthenium carbonyl complexes deposited on faujasite Y-type zeolite as starting materials for the preparation of catalysts. Short chain hydrocarbons, i.e. in the C-j-Cq range are obtained. It appears that the formation and the stabilization of small metallic aggregates into the zeolite supercage are the prerequisite to induce a chain length limitation in the hydrocondensation of carbon monoxide. However, the control of this selectivity through either a definite particle size of the metal or a shape selectivity of the zeolite is still a matter of speculation. Further work is needed to solve this dilemna. [Pg.201]

The incorporation of a ZSM-5 class zeolite into a ruthenium Fischer-Tropsch catalyst promotes aromatics formation and reduces the molecular weight of the hydrocarbons produced. These composite catalysts can produce a high octane aromatic gasoline in good yield in a single step directly from synthesis gas. [Pg.319]

Carbenium ions, 42 115, 143 acid catalysis, 41 336 chemical shift tensors, 42 124-125 fragments in zeolites, 42 92-93 history, 42 116 superacids, 42 117 Carbide catalysts, 34 37 Carbidic carbon, 37 138, 146-147 Carbidic intermediates, 30 189-190, 194 Fischer-Tropsch synthesis, 30 196-197, 206-212... [Pg.59]

Fischer-Tropsch catalysis, 38 332 hydroformylation activity, 38 329-330 in NaY supercages, reversible formation and isomer transformation, 38 374 phosphino polystyrene support, 38 39 reactivity, 38 317-319, 323 ship-in-bottle synthesis in NaY zeolite supercages, 38 368-370... [Pg.189]

In addition to this, solid acid catalysts can also be used in the hydroisomerization cracking of heavy paraffins, or as co-catalysts in Fischer-Tropsch processes. In the first case, it could also be possible to transform inexpensive refinery cuts with a low octane number (heavy paraffins, n-Cg 20) to fuel-grade gasoline (C4-C7) using bifunctional metal/acid catalysts. In the last case, by combining zeolites with platinum-promoted tungstate modified zirconia, hybrid catalysts provide a promising way to obtain clean synthetic liquid fuels from coal or natural gas. [Pg.256]

One shortcoming of the Fischer-Tropsch synthesis is its lack of selectivity in giving complex product mixtures. In an attempt to improve the selectivity of syngas-based hydrocarbon synthesis, Mobil researchers developed a process consisting of converting methyl alcohol (itself, however, produced from syngas) to gasoline (or other hydrocarbons) over a shape-selective intermediate-pore-size zeolite catalyst (H-ZSM-5) 22 78... [Pg.16]

Isoalkanes can also be synthesized by using two-component catalyst systems composed of a Fischer-Tropsch catalyst and an acidic catalyst. Ruthenium-exchanged alkali zeolites288 289 and a hybrid catalyst290 (a mixture of RuNaY zeolite and sulfated zirconia) allow enhanced isoalkane production. On the latter catalyst 91% isobutane in the C4 fraction and 83% isopentane in the C5 fraction were produced. The shift of selectivity toward the formation of isoalkanes is attributed to the secondary, acid-catalyzed transformations on the acidic catalyst component of primary olefinic (Fischer-Tropsch) products. [Pg.109]

More recently phosphorus-containing zeolites developed by Union Carbide (alu-minophosphates, silicoaluminophosphates) were shown to be equally effective in methanol condensation.439-444 ZSM-5 was also shown to exhibit high activity and selectivity in the transformation of Fischer-Tropsch oxygenates to ethylene and propylene in high yields.445 Silicalite impregnated with transition-metal oxides, in turn, is selective in the production of C4 hydrocarbons (15-50% isobutane and 8-15% isobutylene).446... [Pg.119]

Methanol-to-Gasoline. The most significant development in synthetic fuels technology since the discovery of the Fischer-Tropsch process is the Mobil methanol-to-gasoline (MTG) process (47—49). Methanol is efficiendy transformed into C2-C10 hydrocarbons in a reaction catalyzed by the synthetic zeolite ZSM-5 (50—52). The MTG reaction path is presented in Figure 5 (47). The reaction sequence can be summarized as... [Pg.82]

Modification of the zeolite appears to have affected the selectivity of Ru in these hydrogenation reactions. Exchange of K cations for Na cations in Y zeolite increases the basicity of the support (ref. 9). In Fischer-Tropsch reactions over similar catalysts, Ru/Y catalysts so modified yielded significant increases in the olefinic product fraction at the expense of paraffins. Olefins are believed to be primary products in F-T synthesis, with paraffins being produced from olefins in secondary hydrogenation reactions. In an analogous fashion, the Ru/KY catalyst used in the present study might also be expected to... [Pg.147]

Alkylglucosides have already been directly synthesized using heterogeneous catalysts as, for example, macroporous sulfonated resins but with a relatively important amount of oligosaccharides.[38,39] However, it was recently shown that acid zeolites were capable of performing the direct Fischer synthesis by avoiding the formation of oligomer species.[18,40,41]... [Pg.147]

Ruthenium is known to catalyze a number of reactions, including the Fischer-Tropsch synthesis of hydrocarbons (7) and the polymerization of ethylene (2). The higher metal dispersions and the shape selectivity that a zeolite provides has led to the study of ruthenium containing zeolites as catalytic materials (3). A number of factors affect the product distribution in Fischer-Tropsch chemistry when zeolites containing ruthenium are used as the catalyst, including the location of the metal (4) and the method of introducing ruthenium into the zeolite (3). [Pg.372]

The reactions are catalyzed by transition metals (cobalt, iron, and ruthenium) on high-surface-area silica, alumina, or zeolite supports. However, the exact chemical identity of the catalysts is unknown, and their characterization presents challenges as these transformations are carried out under very harsh reaction conditions. Typically, the Fischer-Tropsch process is operated in the temperature range of 150°C-300°C and in the pressure range of one to several tens of atmospheres [66], Thus, the entire process is costly and inefficient and even produces waste [67]. Hence, development of more economical and sustainable strategies for the gas-to-liquid conversion of methane is highly desirable. [Pg.368]


See other pages where Fischer zeolites is mentioned: [Pg.731]    [Pg.2104]    [Pg.285]    [Pg.249]    [Pg.183]    [Pg.34]    [Pg.35]    [Pg.36]    [Pg.346]    [Pg.304]    [Pg.304]    [Pg.129]    [Pg.42]    [Pg.121]    [Pg.545]    [Pg.545]    [Pg.249]    [Pg.91]    [Pg.94]    [Pg.818]    [Pg.7]    [Pg.79]    [Pg.146]    [Pg.444]    [Pg.18]    [Pg.57]    [Pg.55]    [Pg.62]    [Pg.68]   
See also in sourсe #XX -- [ Pg.179 ]




SEARCH



Zeolite Fischer-Tropsch synthesis

Zeolites Fischer indole synthesis

© 2024 chempedia.info