Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Fischer direction

Lei s relurn fo bromochlorofluoromelhane as a simple example of a chiral mole cule The Iwo enanliomers of BrClFCH are shown as ball and slick models as wedge and dash drawings and as Fischer projections m Figure 7 6 Fischer projeclions are always generated Ihe same way Ihe molecule is oriented so lhal Ihe verlical bonds al Ihe chiralily center are directed away from you and Ihe horizonlal bonds poinl toward you A projeclion of Ihe bonds onto Ihe page is a cross The chiralily center lies al Ihe center of Ihe cross bul is nol explicilly shown... [Pg.293]

The aldotetroses are the four stereoisomers of 2 3 4 trihydroxybutanal Fischer pro jections are constructed by orienting the molecule m an eclipsed conformation with the aldehyde group at the top The four carbon atoms define the mam chain of the Fischer projection and are arranged vertically Horizontal bonds are directed outward vertical bonds back... [Pg.1029]

Of all the monosaccharides d (+) glucose is the best known most important and most abundant Its formation from carbon dioxide water and sunlight is the central theme of photosynthesis Carbohydrate formation by photosynthesis is estimated to be on the order of 10 tons per year a source of stored energy utilized directly or indi rectly by all higher forms of life on the planet Glucose was isolated from raisins m 1747 and by hydrolysis of starch m 1811 Its structure was determined in work culmi nating m 1900 by Emil Fischer... [Pg.1032]

Notice that the eclipsed conformation of d ribose derived directly from the Fischer pro jection does not have its C 4 hydroxyl group properly oriented for furanose ring forma tion We must redraw it m a conformation that permits the five membered cyclic hemi acetal to form This is accomplished by rotation about the C(3)—C(4) bond taking care that the configuration at C 4 is not changed... [Pg.1035]

Next translate the Fischer projection of l serine to a three dimensional represen tation and orient it so that the lowest ranked substituent at the chirality center IS directed away from you... [Pg.1116]

Properties. A high volatile western Kentucky bituminous coal, the tar yield of which by Fischer assay was ca 16%, gave a tar yield of ca 26% at a pyrolysis temperature of 537°C (146—148). Tar yield peaked at ca 35% at 577°C and dropped off to 22% at 617°C. The char heating value is essentially equal to that of the starting coal, and the tar has a lower hydrogen content than other pyrolysis tars. The product char is not suitable for direct combustion because of its 2.6% sulfur content. [Pg.94]

Waxes. These are dispersions of polyethylenes, Fischer-Tropsh, Teflon, or vegetable waxes (qv) in a vehicle or solvent. They impart sHp and scuff resistance to ink films. Polyolefin waxes and Teflon are also available as powders that can be directly mixed into inks. [Pg.249]

Synthetic Fuels. Hydrocarbon Hquids made from nonpetroleum sources can be used in steam crackers to produce olefins. Fischer-Tropsch Hquids, oil-shale Hquids, and coal-Hquefaction products are examples (61) (see Fuels, synthetic). Work using Fischer-Tropsch catalysts indicates that olefins can be made directly from synthesis gas—carbon monoxide and hydrogen (62,63). Shape-selective molecular sieves (qv) also are being evaluated (64). [Pg.126]

The indirect liquefaction basehne design is for a plant of similar size. Unhke the direct hquefaction basehne, the design focuses on producing refined transportation fuels by use of Sheh gasification technology. Table 27-17 shows that the crude oil equivalent price is approximately 216/m ( 34/bbl). Additional technological advances in the production of synthesis gas, the Fischer-Tropsch synthesis, and product refining have the potential to reduce the cost to 171/m ( 27/bbl) (1993 US dollars), as shown in the second column of Table 27-17. [Pg.2378]

Tests for purity include the Karl Fischer titration for water this can be applied directly. Acetic acid and methylamine can be detected polarographically. [Pg.287]

A colourless, odourless, neutral liquid at room temperature with a high dielectric constant. The amount of water present can be determined directly by Karl Fischer titration GLC and NMR have been used to detect unreacted propionic acid. Commercial material of high quality is available, probably from the condensation of anhydrous methylamine with 50% excess of propionic acid. Rapid heating to 120-140° with stirring favours the reaction by removing water either directly or as the ternary xylene azeotrope. The quality of the distillate improves during the distn. [Pg.298]

The methods of preparation of ferrocene have been reviewed by Pauson and by Fischer. Ferrocene has been made by the reaction of ferric chloride with cyclopentadienylmagnesium bromide, by the direct thermal reaction of cyclopentadiene with iron metal, by the direct interaction of cyclopentadiene with iron carbonyl, by the reaction of ferrous chloride with cyclopentadiene in the presence of organic bases such as diethyl-amine, by the reaction of ferrous chloride with sodium cyclo-[lentadienide in liquid ammonia, and from cyclopentadiene and... [Pg.33]

In the Fischer convention, the ermfigurations of other molecules are described by the descriptors d and L, which are assigned comparison with the reference molecule glyceraldehyde. In ertqrloying the Fischer convention, it is convenient to use projection formulas. These are planar representations defined in such a w as to convey three-dimensional structural information. The molecule is oriented with the major carbon chain aligned vertically in such a marmer that the most oxidized terminal carbon is at the top. The vertical bonds at each carbon are directed back, away fiom the viewer, and the horizontal bonds are directed toward the viewer. The D and L forms of glyceraldehyde are shown below with the equivalent Fischer projection formulas. [Pg.81]

Let s return to bromochlorofluoromethane as a simple example of a chiral molecule. The two enantiomers of BrCIFCH are shown as ball-and-stick models, as wedge-and-dash drawings, and as Fischer projections in Figure 7.6. Fischer projections are always generated the same way the molecule is oriented so that the vertical bonds at the chirality center are directed away from you and the horizontal bonds point toward you. A projection of the bonds onto the page is a cross. The chirality center lies at the center of the cross but is not explicitly shown. [Pg.293]

Many aryhydrazones provide two or more isomers when subjected to the conditions of the Fischer indole cyclization. The product ratio and the direction of indolization can also be affected by different reaction conditions (i.e. catalysts and solvents), which is attributed, at least in part, to the relative stabilities of the two possible tautomeric ene-hydrazine intermediates. Generally, strongly acidic conditions favor formation of the least substituted ene-hydrazine, while cyclization carried out in weak acids favors the most substituted ene-hydrazine. Eaton s acid (10% P2O5 in MeSOsH) has been demonstrated to be an effective catalyst for the preparation of 3-unsubstituted indoles from methyl ketones under strongly acidic conditions. Many comprehensive reviews on this topic have appeared. ... [Pg.119]

In order to allow further transformation to an indole, the carbonyl compound 8 must contain an a-methylene group. The hydrazone 1 needs not to be isolated. An equimolar mixture of arylhydrazine 7 and aldehyde or ketone 8 may be treated directly under the reaction conditions for the Fischer indole synthesis. ... [Pg.115]

As a constituent of synthesis gas, hydrogen is a precursor for ammonia, methanol, Oxo alcohols, and hydrocarbons from Fischer Tropsch processes. The direct use of hydrogen as a clean fuel for automobiles and buses is currently being evaluated compared to fuel cell vehicles that use hydrocarbon fuels which are converted through on-board reformers to a hydrogen-rich gas. Direct use of H2 provides greater efficiency and environmental benefits. ... [Pg.113]

The net effect of Fischer esterification is substitution of an -OH group by —OR. Aii steps are reversible, and the reaction can be driven in either direction by choice of reaction conditions. Ester formation is favored when a large excess of alcohol is used as solvent, but carboxylic acid formation is favored when a large excess of water is present. [Pg.796]

Esters are usually prepared from carboxylic acids by the methods already discussed. Thus, carboxylic acids are converted directly into esters by SK2 reaction of a carboxyfate ion with a primary alkyl halide or by Fischer esterification of a carboxylic acid with an alcohol in the presence of a mineral acid catalyst. In addition, acid chlorides are converted into esters by treatment with an alcohol in the presence of base (Section 21.4). [Pg.808]

B A Fischer projection can have one group held steady while the other three rotate in either a clockwise or a counterclockwise direction. The effect is simply to rotate around a single bond, which does not change the stereochemistry. [Pg.977]

Follow the steps in the text. (1) Assign priorities to the four substituents on the chiral carbon. (2) Manipulate the Fischer projection to place the group of lowest priority at the top by carrying out one of the allowed motions. (3) Determine the direction 1 —> 2 — 3 of the remaining three groups. [Pg.978]


See other pages where Fischer direction is mentioned: [Pg.28]    [Pg.8]    [Pg.14]    [Pg.86]    [Pg.166]    [Pg.2148]    [Pg.28]    [Pg.8]    [Pg.14]    [Pg.86]    [Pg.166]    [Pg.2148]    [Pg.96]    [Pg.210]    [Pg.211]    [Pg.53]    [Pg.465]    [Pg.461]    [Pg.288]    [Pg.444]    [Pg.190]    [Pg.304]    [Pg.110]    [Pg.217]    [Pg.22]    [Pg.174]    [Pg.4]    [Pg.19]    [Pg.1115]    [Pg.360]    [Pg.796]    [Pg.980]    [Pg.980]   
See also in sourсe #XX -- [ Pg.16 ]

See also in sourсe #XX -- [ Pg.16 ]




SEARCH



© 2024 chempedia.info