Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Film evaporator

If a linear mbber is used as a feedstock for the mass process (85), the mbber becomes insoluble in the mixture of monomers and SAN polymer which is formed in the reactors, and discrete mbber particles are formed. This is referred to as phase inversion since the continuous phase shifts from mbber to SAN. Grafting of some of the SAN onto the mbber particles occurs as in the emulsion process. Typically, the mass-produced mbber particles are larger (0.5 to 5 llm) than those of emulsion-based ABS (0.1 to 1 llm) and contain much larger internal occlusions of SAN polymer. The reaction recipe can include polymerization initiators, chain-transfer agents, and other additives. Diluents are sometimes used to reduce the viscosity of the monomer and polymer mixture to faciUtate processing at high conversion. The product from the reactor system is devolatilized to remove the unreacted monomers and is then pelletized. Equipment used for devolatilization includes single- and twin-screw extmders, and flash and thin film evaporators. Unreacted monomers are recovered for recycle to the reactors to improve the process yield. [Pg.204]

The polymer can easily be recovered by simple vacuum filtration or centrifugation of the polymer slurry. This can be followed by direct conversion of the filter cake to dope by slurrying the filter cake in chilled solvent and then passing the slurry through a heat exchanger to form the spinning solution and a thin-film evaporator to remove residual monomer. [Pg.280]

In order to make a multipurpose plant even more versatile than module IV, equipment for unit operations such as soHd materials handling, high temperature/high pressure reaction, fractional distillation (qv), Hquid—Hquid extraction (see Extraction, liquid-liquid), soHd—Hquid separation, thin-film evaporation (qv), dryiag (qv), size reduction (qv) of soHds, and adsorption (qv) and absorption (qv), maybe iastalled. [Pg.438]

Alcohol autoxidation is carried out in the range of 70—160°C and 1000—2000 kPa (10—20 atm). These conditions maintain the product and reactants as Hquids and are near optimum for practical hydrogen peroxide production rates. Several additives including acids, nitriles, stabHizers, and sequestered transition-metal oxides reportedly improve process economics. The product mixture, containing hydrogen peroxide, water, acetone, and residual isopropyl alcohol, is separated in a wiped film evaporator. The organics and water are taken overhead and further refined to recover by-product acetone and the... [Pg.476]

Fig. 2. Flow sheet of lecithin producing unit. Crude soybean oil is heated in the preheater, 1, to 80°C, mixed with 2% water in the proportion control unit, 2, and intensively agitated in 3. The mixture goes to a dweUing container, 4, and is then centrifuged after a residence time of 2—5 min. The degummed oil flows without further drying to the storage tanks. The lecithin sludge is dried in the thin-film evaporator, 6, at 100°C and 6 kPa (60 mbar) for 1—2 min and is discharged after cooling to 50—60°C in the cooler, 8. 9 and 10 are the condenser and vacuum pump, respectively. Fig. 2. Flow sheet of lecithin producing unit. Crude soybean oil is heated in the preheater, 1, to 80°C, mixed with 2% water in the proportion control unit, 2, and intensively agitated in 3. The mixture goes to a dweUing container, 4, and is then centrifuged after a residence time of 2—5 min. The degummed oil flows without further drying to the storage tanks. The lecithin sludge is dried in the thin-film evaporator, 6, at 100°C and 6 kPa (60 mbar) for 1—2 min and is discharged after cooling to 50—60°C in the cooler, 8. 9 and 10 are the condenser and vacuum pump, respectively.
A naphthalene sulfonation product that is rich in the 2,6-isomer and low in sulfuric acid is formed by the reaction of naphthalene with excess sulfuric acid at 125°C and by passing the resultant solution through a continuous wiped-film evaporator at 245°C at 400 Pa (3 mm Hg) (26). The separation in high yield of 99% pure 2,6-naphthalenedisulfonate, as its anilinium salt from a cmde sulfonation product, has been claimed (27). A process has been patented for the separation of 2,6-naphthalenedisulfonic acid from its isomers by treatment with phenylenediarnine (28). [Pg.491]

Similar to IFP s Dimersol process, the Alphabutol process uses a Ziegler-Natta type soluble catalyst based on a titanium complex, with triethyl aluminum as a co-catalyst. This soluble catalyst system avoids the isomerization of 1-butene to 2-butene and thus eliminates the need for removing the isomers from the 1-butene. The process is composed of four sections reaction, co-catalyst injection, catalyst removal, and distillation. Reaction takes place at 50—55°C and 2.4—2.8 MPa (350—400 psig) for 5—6 h. The catalyst is continuously fed to the reactor ethylene conversion is about 80—85% per pass with a selectivity to 1-butene of 93%. The catalyst is removed by vaporizing Hquid withdrawn from the reactor in two steps classical exchanger and thin-film evaporator. The purity of the butene produced with this technology is 99.90%. IFP has Hcensed this technology in areas where there is no local supply of 1-butene from other sources, such as Saudi Arabia and the Far East. [Pg.440]

Methods for isolation of the product polycarbonate remain trade secrets. Feasible methods for polymer isolation include antisolvent precipitation, removal of solvent in boiling water, spray drying, and melt devolatization using a wiped film evaporator. Regardless of the technique, the polymer must be isolated dry, to avoid hydrolysis, and essentially be devoid of methylene chloride. Most polycarbonate is extmded, at which point stabiUzers and colors may be added, and sold as pellets. [Pg.283]

Consider wiped-film evaporator (WEE) (external condenser) when pressure must be in 0.6—0.013 kPa (5—0.1 torr) range. [Pg.451]

Evaporation. Evaporation can be used to separate volatile compounds from nonvolatile components and often is used to remove residual moisture or solvents from soHds or semisoHds. Thin-film evaporators and dryers are examples of evaporation equipment used for this type of appHcation. Some evaporators are also appropriate for aqueous solutions. [Pg.162]

Thin-Film Evaporators. There are two types of thin-film evaporators commonly used in industrial appHcations. The first type introduces feed material into the center of a rotating heated conical receiver. Centrifugal force causes the feed to travel to the outer edge of the conical receiver where it is coUected and drawn off as residue. During the process, the heat causes the volatile components to be driven from the feed. These volatile components are condensed on a chilled surface of the evaporator and coUected as distUlate. [Pg.162]

The second type of thin-film evaporator, termed a wiped-film evaporator, introduces feed material on a heated waU of a cylinder. Rotating wiper blades continuously spread the feed along the inner waU of the cylinder to maintain uniformity of thickness and to ensure contact with the heated surface. The volatile components are driven off and coUected on an internal chilled condenser surface. The condensate or distUlate is removed continuously. At the end of the process, the residual becomes dry and heavy and drops to the bottom of the unit for removal. The wiped-film evaporator is best suited for treatment of viscous or high-solids content feed. [Pg.162]

The clay-cataly2ed iatermolecular condensation of oleic and/or linoleic acid mixtures on a commercial scale produces approximately a 60 40 mixture of dimer acids and higher polycarboxyUc acids) and monomer acids (C g isomerized fatty acids). The polycarboxyUc acid and monomer fractions are usually separated by wiped-film evaporation. The monomer fraction, after hydrogenation, can be fed to a solvent separative process that produces commercial isostearic acid, a complex mixture of saturated fatty acids that is Hquid at 10°C. Dimer acids can be further separated, also by wiped-film evaporation, iato distilled dimer acids and trimer acids. A review of dimerization gives a comprehensive discussion of the subject (10). [Pg.115]

FIG. 11-25 Overall heat-transfer coefficients in agitated-film evaporators. [Pg.1047]

Economic and process considerations usually dictate that agitated thin-film evaporators be operated in single-effect mode. Veiy high temperature differences can then be used many are heated with Dowtherm or other high-temperature media. This permits achieving reasonable capacities in spite of the relatively low heat-transfer coefficients and the small surface that can be provided in a single tube [to about 20 m" (200 ft")]. The structural need for wall thicknesses of 6 to 13 mm (V4 to V2. in) is a major reason for the relatively low heat-transfer coefficients when evaporating water-like materials. [Pg.1141]

F — 50)° (Standiford, Chemical Engineers Handbook, 4th ed., McGraw-Hill, New York, 1963, p. 11-35). Higher values of/c (to about 0.15) can be tolerated in the falhng-film evaporator, where most of the entrainment separation occurs in the tubes, the vapor is scrubbed by liquor leaving the tubes, and the vapor must reverse direction to reach the outlet. [Pg.1142]


See other pages where Film evaporator is mentioned: [Pg.980]    [Pg.986]    [Pg.348]    [Pg.455]    [Pg.101]    [Pg.256]    [Pg.474]    [Pg.297]    [Pg.414]    [Pg.284]    [Pg.268]    [Pg.483]    [Pg.92]    [Pg.339]    [Pg.421]    [Pg.115]    [Pg.474]    [Pg.474]    [Pg.474]    [Pg.474]    [Pg.474]    [Pg.475]    [Pg.477]    [Pg.478]    [Pg.478]    [Pg.479]    [Pg.479]    [Pg.1043]    [Pg.1045]    [Pg.1046]    [Pg.1140]    [Pg.1140]    [Pg.1140]    [Pg.1141]    [Pg.1142]   
See also in sourсe #XX -- [ Pg.503 ]




SEARCH



Evaporated film

Evaporator film evaporators

© 2024 chempedia.info