Big Chemical Encyclopedia

Chemical substances, components, reactions, process design ...

Articles Figures Tables About

Ferroelectric liquid crystals chiral smectic

Another type of LCD uses a chiral smectic C Uquid crystal instead of a nematic liquid crystal. Chiral smectic C liquid crystals are ferroelectric, spontaneously developing an electric polarisation parallel to the smectic layers. In an tmdistorted chiral smectic C liquid crystal, the polarisation is at 90° to the normal to the layers and rotates around the normal as the director rotates aroimd a cone centred on the normal to the layers. However, if the chiral smectic C liquid crystal is placed between properly prepared pieces of glass separated by only several micrometres, it is possible to establish a texture in which the director is parallel to the glass surfaces and uniform throughout the hquid crystal. In this texture, the smectic planes are perpendicular to the glass surfaces and the... [Pg.276]

For chiral nematic liquid crystals, the method outlined previously for a planar nematic cell has been shown to be quite effective. For smectic-A the preparation method is similar to that for a homeotropic nematic cell. In this case, however, it helps to have an externally applied field to help maintain the homeotropic alignment as the sample (slowly) cools down from the nematic to the smectic phase. The cell preparation methods for a ferroelectric liquid crystal (FLC), smectic-C for surface stabilized FLC (SSFLC) operation, is more complicated as it involves surface stabi-lization. f On the other hand, smectic-A (Sm-A ) cells for soft-mode FLC (SMFLC) operation are easier to prepare using the methods described above. ... [Pg.17]

As witli tlie nematic phase, a chiral version of tlie smectic C phase has been observed and is denoted SniC. In tliis phase, tlie director rotates around tlie cone generated by tlie tilt angle [9,32]. This phase is helielectric, i.e. tlie spontaneous polarization induced by dipolar ordering (transverse to tlie molecular long axis) rotates around a helix. However, if tlie helix is unwound by external forces such as surface interactions, or electric fields or by compensating tlie pitch in a mixture, so tliat it becomes infinite, tlie phase becomes ferroelectric. This is tlie basis of ferroelectric liquid crystal displays (section C2.2.4.4). If tliere is an alternation in polarization direction between layers tlie phase can be ferrielectric or antiferroelectric. A smectic A phase foniied by chiral molecules is sometimes denoted SiiiA, altliough, due to the untilted symmetry of tlie phase, it is not itself chiral. This notation is strictly incorrect because tlie asterisk should be used to indicate the chirality of tlie phase and not tliat of tlie constituent molecules. [Pg.2549]

Along with the prediction and discovery of a macroscopic dipole in the SmC phase and the invention of ferroelectric liquid crystals in the SSFLC system, the discovery of antiferroelectric liquid crystals stands as a key milestone in chiral smectic LC science. Antiferroelectric switching (see below) was first reported for unichiral 4-[(l-methylheptyloxy)carbonyl]phenyl-4/-octyloxy-4-biphenyl carboxylate [MHPOBC, (3)],16 with structure and phase sequence... [Pg.470]

This volume of Topics in Stereochemistry could not be complete without hearing about ferroelectric liquid crystals, where chirality is the essential element behind the wide interest in this mesogenic state. In Chapter 8, Walba, a pioneering contributor to this area, provides a historical overview of the earlier key developments in this field and leads us to the discovery of the unique banana phases. This discussion is followed by a view of the most recent results, which involve, among others, the directed design of chiral ferroelectric banana phases, which display spontaneous polar symmetry breaking in a smectic liquid crystal. [Pg.618]

It can be safely predicted that applications of liquid crystals will expand in the future to more and more sophisticated areas of electronics. Potential applications of ferroelectric liquid crystals (e.g. fast shutters, complex multiplexed displays) are particularly exciting. The only LC that can show ferroelectric property is the chiral smectic C. Viable ferroelectric displays have however not yet materialized. Antifer-roelectric phases may also have good potential in display applications. Supertwisted nematic displays of twist artgles of around 240° and materials with low viscosity which respond relatively fast, have found considerable application. Another development is the polymer dispersed liquid crystal display in which small nematic droplets ( 2 gm in diameter) are formed in a polymer matrix. Liquid crystalline elastomers with novel physical properties would have many applications. [Pg.465]

Chiral molecules which form smectic liquid crystals are often capable of forming structures in which the electric dipoles associated with the molecules all point approximately in the same direction in a particular region but in which this direction rotates as one moves in a direction normal to the smectic planes. Such materials are rather misleadingly referred to as ferroelectric liquid crystals. The mechanism responsible for this effect is illustrated in Figure 7.3. The molecules tilt into a smectic-C phase due to their structure as illustrated. Dipoles associated with the molecules are supposed to point in a direction normal to the page. Thus, if the molecules all have the same handedness the dipoles all point in he same direction. This description is an oversimplification as the molecules rotate about their long axes but point preferentially in the manner indicated. This phenomenon has been successfully applied to... [Pg.147]

The free energy density terms introduced so far are all used in the description of the smectic phases made by rod-like molecules, the electrostatic term (6) being characteristic for the ferroelectric liquid crystals made of chiral rod-like molecules. To describe phases made by bent-core molecules one has to add symmetry allowed terms which include the divergence of the polar director (polarization splay) and coupling of the polar director to the nematic director and the smectic layer normal ... [Pg.295]

In a chiral smectic (Sc ) phase, the tilt angle is the same within a layer, but the tilt direction processes and traces a helical path through a stack of layers (Figure 43). It has been demonstrated that when such a helix is completely unwound, as in a surface stabilized ferroelectric liquid crystal cell, then changing the tilt of the molecules fi om +0 to —0 by alternating the direction of an applied field results in a substantial electro-optic effect, which has the features of veiy fast switching (%1 - lOps), high contrast and bistability [87]. The smectic A phase of chiral molecules may also exhibit an electro-optic effect, this arises due to molecular tilt fluctuations which transition is approached, which are combined with a... [Pg.316]

Calamitic metallomesogens forming a chiral smectic C phase (SmC ) are ferroelectric materials. Due to the low symmetry of this phase when the helix is unwound (C2) the molecular dipoles are aUgned within the layers of the SmC phase, giving rise to ferroelectric order in the layers. Because the SmC phase has a helical structure, there is no net macroscopic dipole moment for the bulk phase. However, it is possible to unwind the helix by application of an external electric field or by surface anchoring in thin cells. Under such conditions, a well-aligned film of the ferroelectric liquid crystal can exhibit a net polarisation, called the spontaneous polarisation (Ps). Ferroelectric liquid crystals are of interest for display applications because the macroscopic polarisation can be switched very fast by an... [Pg.108]

Figure 6.38. The chiral smectic C phase (a and b) and the ferroelectric liquid crystal display (c and d). Figure 6.38. The chiral smectic C phase (a and b) and the ferroelectric liquid crystal display (c and d).
Ferroelectric Liquid Ciystal Displays. Chiral tilted smectic liquid crystals, also known as ferroelectric liquid crystals, exhibit macroscopic dipole density, i.e. [Pg.512]

The chapter is organized as follows The second section discusses the prototype polar smectics the ferroelectric liquid crystals. We discuss the structure of the ferroelectric phase, the theoretical explanation for it and we introduce the flexoelectric effect in chiral polar smectics. Next we introduce a new set of chiral polar smectics, the antiferroelectric liquid crystals, and we describe the structures of different phases found in these systems. We present the discrete theoretical modelling approach, which experimentally consistently describes the phases and their properties. Then we introduce the discrete form of the flexoelectric effect in these systems and show that without flexoelectricity no interactions of longer range would be significant and therefore no structures with longer periods than two layers would be stable. We discuss also a few phenomena that are related to the complexity of the structures, such as the existence of a longitudinal, i.e. parallel to the... [Pg.138]

In the most simple chiral polar tilted smectics, ferroelectric liquid crystals, the flexoelectric phenomenon influences the structure of the SmC phase only quantitatively. It affects the elastic and chiral couplings and consequently slightly changes the transition temperature to the tilted phase and the pitch of the helicoidal modulation. [Pg.173]

Chiral smectic ferroelectric liquid crystals are liquids that possess spontaneous polar order. Combined with their excellent processibility on silicon integrated circuits, these liquid crystals provide an attractive potential approach to synthesis of materials for second order nonlinear optics, provided adequate second order susceptibility can be obtained. Unfortunately, the second-order nonlinear optical susceptibility of the ferroelectric liquid crystals are usually low and their thermal stability is limited. Several, very interesting approaches to utilization of liquid crystals, however, were carried out. [Pg.350]

Walba et a/. synthesized a low molar mass ferroelectric liquid crystal specially designed for second-order nonlinear optics that showed a second harmonic coefficient 1X22) of 0.6 0.3 pmA in the chiral smectic C (SC ) phase. The nonlinear optics-chromophores aligned in the direction of the polarization, perpendicular to the long axis of the molecules were later successfully varied. This can be illustrated as follows ... [Pg.351]

The molecule is a liquid crystalline polymer with chiral smectic C phase forming parts attached as side chains. The field required to switch the direction of polarization of the polymer is very low (0.3 MVm ). There is a lot of interest in liquid crystalline ferroelectric polymers, because of their possible use for fast-switching electro-optical devices. More information about ferroelectric liquid crystals can be found in references [36,37]. [Pg.792]

FELCD Ferroelectric liquid crystal device a device exploiting the ferroelectric property of chiral tilted smectic phases (especially smectic C ). [Pg.99]

One of the disadvantages of the LCD display is that the response time is slow (approximately 50 (jls) and the liquid-crystal phase is too symmetric to allow vector order. To overcome this problem, tilted smectic phases with ferroelectric properties (polarisation can be reversed by an electric field) can be used, providing that the liquid crystal is chiral. One such ferroelectric liquid crystal is... [Pg.263]

J.R. Bruckner, J.H. Porada, M. Harjung, C.F. Dietrich, I. Dierking, F. Giesselmann, Chirality effects in a first example of a lyotropic smectic C phase, 31st International Conference on Ferroelectric Liquid Crystals (36 O), Magdeburg, Germany, (2013)... [Pg.115]

The symmetry approach to ferroelectricity in liquid crystals can be realized not only for individual substances but also for multicomponent systems. For low-molar-mass ferroelectric liquid crystals, most applications use LC mixtures with two main components a nonchiral matrix providing the tilted smectic structure and a chiral dopant [7]. As for the preparation of FLCPs, mixing of a smectic C polymer with a chiral dopant also results in a ferroelectric chiral smectic system [74]. Japanese authors [75,76] have carried out systematic studies on mixing tilted smectic polymers with low-molar-mass ferroelectric liquid crystals. [Pg.1151]

Schoenfeld, A., Kremer, F., Vallerien, S. U., Poths, H.. and Zentel, R., Collective and molecular relaxations in polymeric ferroelectric liquid crystals and experimental proof of piezoelectricity in chiral. smectic C-elastomers, Ferroelectrics, 121, 69-77 (1991). [Pg.1181]

Beresnev, L., Chigrinov, V. G., Dergachev, D. I., Poshidaev, E. P., Funfschilling, J., and Schadt, M., Deformed helix ferroelectric liquid crystal display a new electrooptic mode in ferroelectric chiral. smectic C liquid crystals, Liq. Cry.st., 5, 1171-1177 (1989). [Pg.1185]

Lined focal conic fan textme of the chiral smectic C (ferroelectric) liquid crystal phase. [Pg.313]

Ferroelectric materials are a subclass of pyro- and piezoelectric materials (Fig. 1) (see Piezoelectric Polymers). They are very rarely foimd in crystalline organic or polymeric materials because ferroelectric hysteresis requires enough molecular mobility to reorient molecular dipoles in space. So semicrystalline poly(vinylidene fluoride) (PVDF) is nearly the only known compoimd (1). On the contrary, ferroelectric behavior is very often observed in chiral liquid crystalline materials, both low molar mass and poljuneric. For an overview of ferroelectric liquid crystals, see Reference 2. Tilted smectic liquid crystals that are made from chiral molecules lack the symmetry plane perpendicular to the smectic layer structure (Fig. 2). Therefore, they develop a spontaneous electric polarization, which is oriented perpendicular to the layer normal and perpendicular to the tilt direction. Because of the liquid-like structure inside the smectic layers, the direction of the tilt and thns the polar axis can be easily switched in external electric fields (see Figs. 2 and 3). [Pg.3097]

Liquid crystals can be composed both of polar and apolar molecules. An important fact in connection with polar substances is that in uniaxial phases there is no polar ordering of the molecules. In average the dipole moments aligned in a given direction are compensated by those aligned in the opposite direction. As a consequence no spontaneous macroscopic polarization develops. More generally one can state that rotation of the director by n does not affect the physical state of the liquid crystal. In biaxial phases built of chiral molecules, such as the chiral smectic C phase, the situation is different. In these systems the compensation of the dipole moments is not perfect, a macroscopic polarization appears in the direction perpendicular both to the layer normal and the director. These phases are therefore ferroelectric. Ferroelectric liquid crystals are currently perhaps the... [Pg.4]

There are also electro-optic effects using either a different geometry of surface stabilization or a completely different mechanism In the twisted ferroelectric smectic-C cell [54] the moleeules form in the zero field state a quarter helix which is removed when a dc field of either polarity is applied the optical effect is achieved in the same way as in a twisted nematic cell. Compounds with a short chiral smectic-C pitch in a thick cell are used for the distorted helix ferroelectric (DHF) device [55] this effect uses the optical difference between the zero-field state eharacterized by a fully developed short-pitch helix, and structures with a distorted or almost unwound helix in the presence of an applied field optically addressed spatial light modulators can take advantage of the DHF effect [56]. Further applications of ferroelectric liquid crystals are switchable diffraction gratings [57]. [Pg.236]


See other pages where Ferroelectric liquid crystals chiral smectic is mentioned: [Pg.206]    [Pg.219]    [Pg.458]    [Pg.397]    [Pg.378]    [Pg.9]    [Pg.344]    [Pg.227]    [Pg.911]    [Pg.1144]    [Pg.3]    [Pg.140]    [Pg.487]    [Pg.4]    [Pg.18]    [Pg.19]   


SEARCH



Chiral crystallization

Chiral crystals

Chiral liquid crystals

Crystal chirality

Ferroelectric crystals

Ferroelectric liquid crystals ferroelectricity

Ferroelectricity crystals

Ferroelectricity liquid crystals

Ferroelectrics liquid crystals

Liquid crystal chirality

Liquid crystals smectics

Liquid smectic

Smectic liquid crystals

Smectic liquid crystals, ferroelectricity

Smectics, ferroelectricity

© 2024 chempedia.info